Skip to main content
Log in

Cellular citrate levels establish a regulatory link between energy metabolism and the hepatic iron hormone hepcidin

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Expression of the hepatic peptide hormone hepcidin responds to iron levels via BMP/SMAD signaling, to inflammatory cues via JAK/STAT signaling, to the nutrient-sensing mTOR pathway, as well as to proliferative signals and gluconeogenesis. Here, we asked the question whether hepcidin expression is altered by metabolites generated by intermediary metabolism. To identify such metabolites, we took advantage of a comprehensive RNAi screen, which revealed effectors involved in citrate metabolism. We show that the inhibition of citrate-consuming enzymes increases hepcidin mRNA expression in primary murine hepatocytes. Consistently, citrate treatment of primary murine hepatocytes or intravenous injection of citrate in mice increases cellular citrate concentrations and hepcidin expression. We further demonstrate that the hepcidin response to citrate involves the SMAD signaling pathway. These results reveal links between iron homeostasis and energy metabolism that may help to explain why iron levels are frequently altered in metabolic disorders.

Key messages

• Elevated citrate levels increase hepcidin mRNA expression in primary hepatocytes.

• Citrate treatment in primary hepatocytes activates hepcidin expression.

• Intravenous injection of citrate in mice increases hepcidin mRNA levels.

• The hepcidin response to citrate involves the BMP/SMAD signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ganz T, Nemeth E (2015) Iron homeostasis in host defence and inflammation. Nat rev Immunol 15:500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell DOI. doi:10.1016/j.cell.2016.12.034

  3. Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150

    Article  CAS  PubMed  Google Scholar 

  4. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  CAS  PubMed  Google Scholar 

  5. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  CAS  PubMed  Google Scholar 

  6. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  CAS  PubMed  Google Scholar 

  8. Atkinson DE (1968) Citrate and the citrate cycle in the regulation of energy metabolism. Biochem Soc Symp 27:23–40

    CAS  PubMed  Google Scholar 

  9. Voet D, Voet JG (2011) Citric acid cycle Biochemistry John Wiley & Sons, United States of America, pp. 789-822.

  10. Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825:111–116

    CAS  PubMed  Google Scholar 

  11. Sanchez M, Galy B, Muckenthaler MU, Hentze MW (2007) Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat Struct Mol Biol 14:420–426

    Article  CAS  PubMed  Google Scholar 

  12. Dandekar T, Stripecke R, Gray NK, Goossen B, Constable A, Johansson HE, Hentze MW (1991) Identification of a novel iron-responsive element in murine and human erythroid delta-aminolevulinic acid synthase mRNA. EMBO J 10:1903–1909

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gray NK, Pantopoulos K, Dandekar T, Ackrell BA, Hentze MW (1996) Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc Natl Acad Sci U S A 93:4925–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oexle H, Gnaiger E, Weiss G (1999) Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochim Biophys Acta 1413:99–107

    Article  CAS  PubMed  Google Scholar 

  15. Mleczko-Sanecka K, Roche F, da Silva AR, Call D, D'Alessio F, Ragab A, Lapinski PE, Ummanni R, Korf U, Oakes C et al (2014) Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling. Blood 123:1574–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vecchi C, Montosi G, Garuti C, Corradini E, Sabelli M, Canali S, Pietrangelo A (2014) Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology 146:1060–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bekri S, Gual P, Anty R, Luciani N, Dahman M, Ramesh B, Iannelli A, Staccini-Myx A, Casanova D, Ben Amor I et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131:788–796

    Article  CAS  PubMed  Google Scholar 

  18. Martinelli N, Traglia M, Campostrini N, Biino G, Corbella M, Sala C, Busti F, Masciullo C, Manna D, Previtali S et al (2013) Correction: Increased Serum Hepcidin Levels in Subjects with the Metabolic Syndrome: A Population Study PLoS One:8

  19. Jiang F, Sun ZZ, Tang YT, Xu C, Jiao XY (2011) Hepcidin expression and iron parameters change in type 2 diabetic patients. Diabetes Res Clin Pract 93:43–48

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Li H, Jiang X, Shi W, Shen Z, Li M (2014) Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats. Diabetes 63:1506–1518

    Article  CAS  PubMed  Google Scholar 

  21. Goncalves LA, Vigario AM, Penha-Goncalves C (2007) Improved isolation of murine hepatocytes for in vitro malaria liver stage studies. Malar J 6:169

    Article  PubMed  PubMed Central  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  23. Altamura S, Kessler R, Grone HJ, Gretz N, Hentze MW, Galy B, Muckenthaler MU (2014) Resistance of ferroportin to hepcidin binding causes exocrine pancreatic failure and fatal iron overload. Cell Metab 20:359–367

    Article  CAS  PubMed  Google Scholar 

  24. Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    Article  CAS  PubMed  Google Scholar 

  25. Beinert H, Kennedy MC (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB j 7:1442–1449

    CAS  PubMed  Google Scholar 

  26. Vasquez-Vivar J, Kalyanaraman B, Kennedy MC (2000) Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 275:14064–14069

    Article  CAS  PubMed  Google Scholar 

  27. Sun T, Hayakawa K, Bateman KS, Fraser ME (2010) Identification of the citrate-binding site of human ATP-citrate lyase using X-ray crystallography. J Biol Chem 285:27418–27428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li JJ, Wang H, Tino JA, Robl JA, Herpin TF, Lawrence RM, Biller S, Jamil H, Ponticiello R, Chen L et al (2007) 2-hydroxy-N-arylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorg med Chem Lett 17:3208–3211

    Article  CAS  PubMed  Google Scholar 

  29. Degu A, Hatew B, Nunes-Nesi A, Shlizerman L, Zur N, Katz E, Fernie AR, Blumwald E, Sadka A (2011) Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta 234:501–513

    Article  CAS  PubMed  Google Scholar 

  30. Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15

    Article  CAS  PubMed  Google Scholar 

  31. Srere PA (1959) The citrate cleavage enzyme. I Distribution and Purification. J Biol Chem 234:2544–2547

    CAS  PubMed  Google Scholar 

  32. Hanai J, Doro N, Sasaki AT, Kobayashi S, Cantley LC, Seth P, Sukhatme VP (2012) Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol 227:1709–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Costello LC, Liu Y, Franklin RB, Kennedy MC (1997) Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 272:28875–28881

    Article  CAS  PubMed  Google Scholar 

  34. Shlizerman L, Marsh K, Blumwald E, Sadka A (2007) Iron-shortage-induced increase in citric acid content and reduction of cytosolic aconitase activity in citrus fruit vesicles and calli. Physiol Plant 131:72–79

    Article  CAS  PubMed  Google Scholar 

  35. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2004) Cell viability assays. In: Coussens NP, Nelson H, Arkin M, Auld D, Austin C, Bejcek B, Glicksman M, Inglese J, Iversen PW, Li Z, McGee J, McManus O, Minor L, Napper A, Peltier JM, Riss T, Trask OJ Jr, Weidner J (eds) Sittampalam GS. Assay Guidance Manual, Bethesda (MD)

    Google Scholar 

  36. Pajor AM (2014) Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch 466:119–130

    Article  CAS  PubMed  Google Scholar 

  37. Mycielska ME, Patel A, Rizaner N, Mazurek MP, Keun H, Patel A, Ganapathy V, Djamgoz MB (2009) Citrate transport and metabolism in mammalian cells: prostate epithelial cells and prostate cancer. BioEssays 31:10–20

    Article  CAS  PubMed  Google Scholar 

  38. Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC, Public Policy Committee of the American Association for the Study of Liver D (2008) Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 47:1363–1370

    Article  Google Scholar 

  39. Besson-Fournier C, Latour C, Kautz L, Bertrand J, Ganz T, Roth MP, Coppin H (2012) Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling. Blood 120:431–439

    Article  CAS  PubMed  Google Scholar 

  40. Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY et al (2009) BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 41:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kautz L, Meynard D, Monnier A, Darnaud V, Bouvet R, Wang RH, Deng C, Vaulont S, Mosser J, Coppin H et al (2008) Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112:1503–1509

    Article  CAS  PubMed  Google Scholar 

  42. Parrow NL, Fleming RE (2014) Bone morphogenetic proteins as regulators of iron metabolism. Annu rev Nutr 34:77–94

    Article  CAS  PubMed  Google Scholar 

  43. Casanovas G, Mleczko-Sanecka K, Altamura S, Hentze MW, Muckenthaler MU (2009) Bone morphogenetic protein (BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD. J Mol med (Berl) 87:471–480

    Article  CAS  Google Scholar 

  44. Kohler SA, Menotti E, Kuhn LC (1999) Molecular cloning of mouse glycolate oxidase. High Evolutionary Conservation and Presence of an Iron-Responsive Element-like Sequence in the mRNA. J Biol Chem 274:2401–2407

    Article  CAS  PubMed  Google Scholar 

  45. Merrill JF, Thomson DM, Hardman SE, Hepworth SD, Willie S, Hancock CR (2012) Iron deficiency causes a shift in AMP-activated protein kinase (AMPK) subunit composition in rat skeletal muscle. Nutr Metab (Lond) 9:104

    Article  CAS  Google Scholar 

  46. Drakesmith H, Prentice A (2008) Viral infection and iron metabolism. Nat rev Microbiol 6:541–552

    Article  CAS  PubMed  Google Scholar 

  47. Tapryal N, Vivek GV, Mukhopadhyay CK (2015) Catecholamine stress hormones regulate cellular iron homeostasis by a posttranscriptional mechanism mediated by iron regulatory protein: implication in energy homeostasis. J Biol Chem 290:7634–7646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galvez T, Teruel MN, Heo WD, Jones JT, Kim ML, Liou J, Myers JW, Meyer T (2007) siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake. Genome Biol 8: R142

  49. La P, Yang G, Dennery PA (2013) Mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation stabilizes ISCU protein: implications for iron metabolism. J Biol Chem 288:12901–12909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550

    Article  CAS  PubMed  Google Scholar 

  51. Ladurner AG (2009) Chromatin places metabolism center stage. Cell 138:18–20

    Article  CAS  PubMed  Google Scholar 

  52. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miura K, Taura K, Kodama Y, Schnabl B, Brenner DA (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48:1420–1429

    Article  CAS  PubMed  Google Scholar 

  54. Verga Falzacappa MV, Casanovas G, Hentze MW, Muckenthaler MU (2008) A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol med (Berl) 86:531–540

    Article  CAS  Google Scholar 

  55. Taylor WM, Halperin ML (1973) Regulation of pyruvate dehydrogenase in muscle. Inhibition by Citrate. J Biol Chem 248:6080–6083

    CAS  PubMed  Google Scholar 

  56. Hillar M, Lott V, Lennox B (1975) Correlation of the effects of citric acid cycle metabolites on succinate oxidation by rat liver mitochondria and submitochondrial particles. J Bioenerg 7:1–16

    Article  CAS  PubMed  Google Scholar 

  57. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Oxidation of glucose and fatty acids to CO2Molecular cell Biology W. H. Freeman, New York

    Google Scholar 

  58. Usenik A, Legisa M (2010) Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase. PLoS One 5:e15447

    Article  PubMed  PubMed Central  Google Scholar 

  59. Berg JM, Tymoczko JL, Stryer L (2002) Gluconeogenesis and glycolysis are reciprocally regulatedBiochemistry W. H. Freeman, New York

    Google Scholar 

  60. Beaty NB, Lane MD (1983) Kinetics of activation of acetyl-CoA carboxylase by citrate. Relationship to the rate of polymerization of the enzyme. J Biol Chem 258:13043–13050

    CAS  PubMed  Google Scholar 

  61. Hines JK, Fromm HJ, Honzatko RB (2007) Structures of activated fructose-1,6-bisphosphatase from Escherichia coli. Coordinate regulation of bacterial metabolism and the conservation of the R-state. J Biol Chem 282:11696–11704

    Article  CAS  PubMed  Google Scholar 

  62. Hines JK, Kruesel CE, Fromm HJ, Honzatko RB (2007) Structure of inhibited fructose-1,6-bisphosphatase from Escherichia coli: distinct allosteric inhibition sites for AMP and glucose 6-phosphate and the characterization of a gluconeogenic switch. J Biol Chem 282:24697–24706

    Article  CAS  PubMed  Google Scholar 

  63. Senates E, Yilmaz Y, Colak Y, Ozturk O, Altunoz ME, Kurt R, Ozkara S, Aksaray S, Tuncer I, Ovunc AO (2011) Serum levels of hepcidin in patients with biopsy-proven nonalcoholic fatty liver disease. Metab Syndr Relat Disord 9:287–290

    Article  CAS  PubMed  Google Scholar 

  64. Infantino V, Iacobazzi V, De Santis F, Mastrapasqua M, Palmieri F (2007) Transcription of the mitochondrial citrate carrier gene: role of SREBP-1, upregulation by insulin and downregulation by PUFA. Biochem Biophys res Commun 356:249–254

    Article  CAS  PubMed  Google Scholar 

  65. Gnoni GV, Giudetti AM, Mercuri E, Damiano F, Stanca E, Priore P, Siculella L (2010) Reduced activity and expression of mitochondrial citrate carrier in streptozotocin-induced diabetic rats. Endocrinology 151:1551–1559

    Article  CAS  PubMed  Google Scholar 

  66. Kaplan RS, Oliveira DL, Wilson GL (1990) Streptozotocin-induced alterations in the levels of functional mitochondrial anion transport proteins. Arch Biochem Biophys 280:181–191

    Article  CAS  PubMed  Google Scholar 

  67. Sam AH, Busbridge M, Amin A, Webber L, White D, Franks S, Martin NM, Sleeth M, Ismail NA, Daud NM et al (2013) Hepcidin levels in diabetes mellitus and polycystic ovary syndrome. Diabet med 30:1495–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van de Wier B, Balk JM, Haenen GR, Giamouridis D, Bakker JA, Bast BC, den Hartog GJ, Koek GH, Bast A (2013) Elevated citrate levels in non-alcoholic fatty liver disease: the potential of citrate to promote radical production. FEBS Lett 587:2461–2466

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M.U.M. acknowledges funding from the Deutsche Forschungsgemeinschaft (SFB1118) and the Dietmar Hopp Stiftung. The authors thank Klaus Schmitt from the EMBL Laboratory for Animal Resources for his support with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias W. Hentze or Martina U. Muckenthaler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.R., Neves, J., Mleczko-Sanecka, K. et al. Cellular citrate levels establish a regulatory link between energy metabolism and the hepatic iron hormone hepcidin. J Mol Med 95, 851–860 (2017). https://doi.org/10.1007/s00109-017-1551-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1551-3

Keywords

Navigation