Skip to main content
Log in

Carnitin-Mangel: Eine behandelbare Ursache kindlicher Kardiomyopathien

Carnitine deficiency: A treatable cause of cardiomyopathy in children

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

In this report, the syndrome of carnitine deficiency, its biochemistry, diagnosis, and treatment are discussed. We describe two families where carnitine deficiency was believed to cause cardiomyopathies in children. Three of five children died in one family but the fourth child could be treated successfully.

Carnitine (Car) is a quarternary ammonium compound, synthesized in the body from the amino acids lysin and methion and plays an important role in fatty acid metabolism. It is required as a carrier for the transport of long-chain-acyl-CoA esters from the cytoplasm into mitochondria. Lack of Car, therefore, results in impairment of mitochondrial fatty acid oxidation and cytoplasmic accumulation of lipids. This particularly affects the myocardium, which normally depends largely on fatty acid oxidation. There are different clinical syndromes of Car deficiency, depending on the underlying biochemical defect. Systematic Car deficiency is due to a defect in the biosynthesis of Car and was found in a familiy where four of five siblings developed a cardiomyopathy and three children died suddenly before the age of 3 years. At the autopsy, cardiomyopathy was confirmed in all three cases. The autopsy of the fifth child revealed lipid accumulation and abnormal mitochondria in cardiac and skeletal muscle together with extremely low Car levels in the plasma (4.5 mM; normal 50±10 nM), skeletal muscle (30.9 nmol/g; normal 5,000 nmol/g), and heart (56.8 nmol/g; normal 2,000 nmol/g). The surviving fourth child with cardiomyopathy and heart insufficiency (NYHA III) had also dramatically decreased plasma (4.8 mM) and muscle (30.9 nmol/g) Car levels. Oral substitution of L-Car caused dramatic clinical improvement. Plasma and muscle Car levels increased and muscle histology improved.

We conclude that Car deficiency may cause cardiomyopathies in children. These cardiomyopathies are characterized by lipid accumulation and are very sensitive to Car treatment. We suggest that in all familiar cardiomyopathies of unknown etiology, especially when lipid accumulation is present, plasma Car levels should be measured and, if necessary, a substitution with L-Car should be started.

Zusammenfassung

In diesem Bericht werden 2 Familien vorgestellt, in denen kindlicher Carnitin-Mangel zu Kardiomyopathien führte, die in einem Fall erfolgreich behandelt werden konnten. Symptomatik, Diagnose und Therapie des Carnitin-Mangels werden gemeinsam mit seinen biochemischen Grundlagen diskutiert.

Carnitin (CAR), eine 4wertige Ammoniumverbindung, die im Körper aus den Aminosäuren Lysin und Methinonin synthetisiert wird, spielt eine wichtige Rolle in der Fettsäureoxidation. CAR dient als Carrier für den Transport langkettiger Fettsäure-CoA-Ester aus dem Cytoplasma in die Mitochondrien. Daher führt Car-Mangel zu Störungen der mitochondrialen Fettsäureoxidation und der Akkumulation von Lipiden im Cytoplasma. Besonders betroffen ist das Herz, das zur Deckung seines Energiebedarfs in großem Umfang von der Fettsäure-Oxidation abhängig ist.

CAR-Mangel kann, je nach dem zugrundeliegenden biochemischen Defekt, in verschiedenen Formen auftreten. Systemischer CAR-Mangel wurde in einer Familie entdeckt, in der 4 von 5 Kindern Kardiomyopathien entwickelten und 3 Kinder vor dem Alter von 3 Jahren plötzlich verstarben. Bei der Autopsie wurde die klinische Diagnose einer Kardiomyopathie in allen Fällen bestätigt. Bei der Autopsie des 5, und jüngsten Kindes wurden außerdem Lipidakkumulation und abnorme Mitochondrien im Herz- und Skelettmuskel nachgewiesen, zusammen mit extrem niedrigen CAR-Spiegeln im Plasma (4,5 mM; normal 50±10 mM), im Skelettmuskel (30,9 nmol/g; normal 5000 nmol/g) und Myokard (56,8 nmol/g; normal 2000 nmol/g). Das überlebende 4. Kind hatte ebenfalls eine schwere congestive Kardiomyopathie und Herzinsuffizienz (NYHA III). Plasma (4,8 mM)-, und Muskel (30,9 nmol/g)-CAR-Spiegel waren extrem niedrig. Durch orale Substitutionstherapie mit L-CAR konnte eine dramatische klinische Besserung erreicht werden. Plasma- und Muskel-CAR-Spiegel stiegen, und die Muskelhistologie besserte sich.

Wir schließen aus diesem Verlauf, daß es das Krankheitsbild einer kindlichen Kardiomyopathie, die durch Carnitin-Mangel hervorgerufen wird, gibt. Diese Kardiomyopathie ist durch Lipidakkumulation gekennzeichnet und spricht gut auf CAR-Substitution an. Wir glauben, daß bei allen familiär auftretenden Kardiomyopathien unklarer Genese, besonders wenn Lipidakkumulation nachgewiesen ist, der Plasma-Carnitin-Spiegel gemessen und nötigenfalls eine Substitutionstherapie mit L-Carnitin eingeleitet werden sollte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Angelini C, Lücke S, Cantarutti F (1976) Carnitine deficiency of skeletal muscle: Report of a treated case. Neurology (Minneap) 26:633–637

    Google Scholar 

  2. Bieber LL, Markwell MA, Blair M, Helmrath TA (1973) Studies on the development of carnitine palmitoyltransferase and fatty acid oxidation in liver mitochondria of neonatal pigs. Biochim Biophys Acta 326:145–154

    Google Scholar 

  3. Bohmer T, Bergram H, Eiklid K (1978) Carnitine deficiency induced during intermittent haemodialysis for renal failure. Lancet 1:126–128

    Google Scholar 

  4. Bohmer T, Molstadt P (1980) Carnitine transport across the plasma membrane. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism and functions. Academic Press, New York, pp 73–90

    Google Scholar 

  5. Böhmer T, Rydning A, Solberg HE (1974) Carnitine levels in human serum in health and disease. Clin Chim Acta 57:55–61

    Google Scholar 

  6. Borum PR, Broquist HP, Roelops RJ (1977) Muscle carnitine levels in neuromuscular disease. J Neurol Sci 34:279–286

    Google Scholar 

  7. Borum PR, Park JH, Law PK, Roelops RJ (1978) Altered tissue carnitine levels in animals with hereditary muscular dystrophy. J Neurol Sci 38:113–121

    Google Scholar 

  8. Boudin G, Mikol S, Guillard A, Engel AG (1976) Fatal systemic carnitine deficiency with lipid storage in skeletal muscle, heart, liver, and kidney. J Neurol Sci 30:313–325

    Google Scholar 

  9. Bremer J (1968) In: Gran FC (eds) Cellular compartmentalization and control of fatty acid metabolism. Academic Press, New York, pp 65–68

    Google Scholar 

  10. Bressler R (1970) Physiological-chemical aspects of fatty acid oxidation. In: Wakil SJ (ed) Lipid metabolism. Academic Press, New York, pp 49–77

    Google Scholar 

  11. Challoner DR, Prols HG (1972) Fatty acid oxidation and carnitine levels in diphteric guinea pig myocardium. J Clin Invest 51:2071–2076

    Google Scholar 

  12. Chapoy PR, Angelini C, Brown WJ, Stiff J, Shug AL, Cederbaum SD (1980) Systemic carnitine deficiency: a treatable inherited lipid storage disease presentin as Reye's syndrome. N Engl J Med 303:1389–1394

    Google Scholar 

  13. Cornelio F, Di Donato S, Peluchetti D, et al. (1977) Fatal cases of lipid storage myopathy with carnitine deficiency. J Neurol Neurosurg Psych 40:170–178

    Google Scholar 

  14. Deacon JSR, Gilbert EF, Viseskul C, Herrmann J, Angevine JM, Opitz JM, Albert AE (1979) Familial cardiac lipidosis. Can Med A J 120:644

    Google Scholar 

  15. Di Mauro S, Melis Di Mauro PM (1973) Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 182:929–931

    Google Scholar 

  16. Engel AG (1980) Possible causes and effects of carnitine deficiency in man. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism and functions. Academic Press, New York, pp 271–286

    Google Scholar 

  17. Engel AG, Banker BQ, Eiben RW (1977) Carnitine deficiency: Clinical, morphological and biochemical observations in a fatal case. J Neurol Neurosurg Psych 40:313–322

    Google Scholar 

  18. Frenkel RA, Carter AL (1980) Synthesis of carnitine precursors in rat kidney. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism and functions. Academic Press, New York, pp 19–30

    Google Scholar 

  19. Fritz IB (1963) Carnitine and its role in fatty acid metabolism. In: Paoletti R, Kritchevsky D (eds) Advances in lipid research. Academic Press, New York, pp 285–334

    Google Scholar 

  20. Fritz IB (1968) In: Gran C (ed) Cellular compartmentalization and control of fatty acid metabolism. Academic Press, New York, pp 39–63

    Google Scholar 

  21. Hart ZH, Chang C, Di Mauro S, Farooki Q, Ayyar R (1978) Muscle carnitine deficiency and fatal cardiomyopathy. Neurology (Minneap) 28:147–151

    Google Scholar 

  22. Hosking GP, Cavanagh NPC, Smyth DPL, Wilson J (1977) Oral treatment of carnitine myopathy. Lancet 1:835–841

    Google Scholar 

  23. Hostetler KY, Hoppek CL, Romine JS, Sipe JC, Gross SR, Higginbottom PA (1978) Partial deficiency of muscle carnitine palmityltransferase with normal ketone production. N Engl J Med 298:553–557

    Google Scholar 

  24. Karpati G, Carpenter S, Engel AG, Watters G, Allen J, Rothman S, Klassen G, Mamer OA (1975) The syndrome of systemic carnitine deficiency. Neurology (Minneap) 25:16–24

    Google Scholar 

  25. Lindstedt G (1967) Hydroxylation of gamma-butyrobetain to carnitine in rat liver. Biochem J 1271–1282

  26. Molstad P (1980) The efflux of L-carnitine from cells in culture. Biochim Biophys Acta 597:166–173

    Google Scholar 

  27. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 36:413–459

    Google Scholar 

  28. Neely JR, Denton RM, England PJ, Randle PJ (1972) The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J 128:147–159

    Google Scholar 

  29. Parvin R, Pande SV (1977) Microdetermination of carnitine and carnitine acetyltransferase activity. Analytical Biochem 79:190–201

    Google Scholar 

  30. Pongratz D, Hübner G, Deufel Th, Wieland O, Pongratz E, Liphardt R (1979) Klinische, morphologische und biochemische Befunde bei Carnitinmangelmyopathien. Klin Wochenschr 57:927–936

    Google Scholar 

  31. Rebouche CJ (1980) Comparative aspects of carnitine biosynthesis in microorganisms and mammals with attention to carnitine biosynthesis in man. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism and functions. Academic Press, New York, pp 57–72

    Google Scholar 

  32. Rudman D, Ansley JD, Sewell CW (1980) Carnitine deficiency in cirrhosis. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism and functions. Academic Press, New York, pp 307–320

    Google Scholar 

  33. Scarlato G, Pellegrini G, Cerri C, Meola G, Veicsteinas A (1978) The syndrome of carnitine deficiency: morphological and metabolic correlations in two cases. Can J Neurol Sci 5:205–213

    Google Scholar 

  34. Shug AL, Hayes B, Huth PJ, Thomsen JH, Bittar N, Hall PV, Demling RH (1980) Changes in carnitine-linked metabolism during ischemia, thermal injury, and shock. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism, and functions. Academic Press, New York, pp 321–339

    Google Scholar 

  35. Shug AL (unpublished data)

  36. Tripp ME, Katcher ML, Peters HA, Gilbert EF, Arya S, Hodach RJ, Shug AL (1981) Systemic carnitine deficiency presenting as familial endocardial fibroelastosis: a treatable cardiomyopathy. N Engl J Med 305, 7:385–390

    Google Scholar 

  37. Tubbs PK, Ramsay RR, Edwards MR (1980) Inhibitors of CAR-transport and metabolism. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism, and functions. Academic Press, New York, pp 207–218

    Google Scholar 

  38. Van Dyke DH, Griggs RC, Markesberry W, Di Mauro S (1975) Hereditary carnitine deficiency of muscle. Neurology (Minneap) 25:154–159

    Google Scholar 

  39. Waber L, Valle D, Neill C, Shug A (1982) Systemic carnitine deficiency: a treatable cause of familial cardiomyopathy. (Submitted for publication)

  40. Ware AJ, Burton WO, McGarry JD, Marks JF, Weinberg AG (1978) Systemic carnitine deficiency: report of a fatal case with multisystemic manifestations. J Pediat 93:959–964

    Google Scholar 

  41. Wittels B, Bressler RJ (1965) Biochemical lesion of diphtheria toxin in the heart. J Clin Invest 44:1639

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regitz, V., Hodach, R.J. & Shug, A.L. Carnitin-Mangel: Eine behandelbare Ursache kindlicher Kardiomyopathien. Klin Wochenschr 60, 393–400 (1982). https://doi.org/10.1007/BF01735930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01735930

Key words

Schlüsselwörter

Navigation