Skip to main content
Log in

Gene structure and alternative splicing of XFG 5-1, a X. laevis Zn finger protein with RNA homopolymer binding activity

  • Research Articles
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We describe the fine-structure of the Xenopus laevis XFG 5-1 gene which codes for an RNA homopolymer binding Zn finger protein of the FAR (FingerAssociatedRepeat) subfamily. The gene contains six exons, i.e., a leader exon (I), four exons (II-V), each of them encoding one individual copy of the FAR repeat, and one exon (VI) encoding the linker as well as the complete multifinger-region of the corresponding protein. Isolation and characterization of distinct cDNAs revealed that primary transcripts are alternatively spliced, thereby leading either to mRNAs containing different copy numbers of the FAR repeat or, by utilization of an alternative splice acceptor site in front of exon VI, to an extension of the linker region between the FAR repeats and the multifinger domain. We also describe the fine-structure of a closely related gene, termed XFG 5-2, which is located downstream to the XFG 5-1 gene. The general structural organization in both genes is identical, but point mutations should give rise to a XFG 5-2 protein with a different number of Zn finger units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott MP, Tamkun JW & Hartzell GW (1989) Biochim Biophys Acta 989: 25–48

    Google Scholar 

  2. El-Baradi R & Pieler T (1991) Mech of Dev 35: 155–169

    Google Scholar 

  3. Rosenfeld MG (1991) Genes Dev 5: 897–907

    Google Scholar 

  4. Kessel M & Gruss P (1990) Science 249: 374–379

    Google Scholar 

  5. Knöchel W, Pöting A, Köster M, El-Baradi T, Nietfeld W, Bouwmeester T & Pieler T (1989) Proc Natl Acad Sci USA 86: 6097–6100

    Google Scholar 

  6. Klocke B, Köster M, Hille S, Bouwmeester T, Böhm S, Pieler T & Knöchel W (1993) Biochim Biophys Acta: submitted

  7. Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O & Martial JA (1991) Proc Natl Acad Sci USA 88: 3608–3612

    Google Scholar 

  8. Rosati M, Marino M, Franze A, Tramontano A & Grimaldi G (1991) Nue Acids Res 19: 5661–5667

    Google Scholar 

  9. Köster M, Pieler T, Pöting A & Knöchel W (1988) EMBO J 7: 1735–1741

    Google Scholar 

  10. Nietfeld W, El-Baradi T, Mentzel H, Pieler T, Köster M, Pöting A & Knöchel W (1989) J Mol Biol 208: 639–659

    Google Scholar 

  11. Köster M, Kühn U, Bouwmeester T, Nietfeld W, El-Baradi T, Knöchel W & Pieler T (1991) EMBO J 10: 3087–3093

    Google Scholar 

  12. van Wijk I, Burfeind J & Pieler T (1992) Mech Dev 39: 63–72

    Google Scholar 

  13. Nieuwkoop PD & Faber J (1956) Normal Table of Xenopus laevis. Daudin, North-Holland, Amsterdam

    Google Scholar 

  14. Schubiger JL, Germond JE, ten Heggeler B & Wahli W (1985) J Mol Biol 186: 491–503

    Google Scholar 

  15. Hummel S, Meyerhof W, Korge E & Knöchel W (1984) Nuc Acids Res 12: 4921–4938

    Google Scholar 

  16. Sophr G, Reith W & Sures I (1981) J Mol Biol 151: 573–592

    Google Scholar 

  17. Sophr G, Reith W & Crippa M (1982) Dev Biol 94: 71–78

    Google Scholar 

  18. Baker CC, Herisse J, Courtois G, Galibert F & Ziff E (1979) Cell 18: 569–580

    Google Scholar 

  19. Grosschedl R & Birnstiel MS (1980) Proc Natl Acad Sci USA 77: 1432–1436

    Google Scholar 

  20. Ghosh PK, Lebowitz P, Frisque RJ & Gluzman Y (1981) Proc Natl Acad Sci USA 78: 100–104

    Google Scholar 

  21. Benoist C & Chambon P (1981) Nature 290: 304–310

    Google Scholar 

  22. Krieg PA, Varnum S, Wormington MW & Melton DA (1989) Dev Biol 133: 93–100

    Google Scholar 

  23. Pöting A, Danker K, Hartmann L, Köster M, Wedlich D & Knöchel W (1990) Differentiation 44: 103–110

    Google Scholar 

  24. Nietfeld W, Conrad S, van Wijk I, Giltay R, Bouwmeester T, Knöchel W & Pieler T (1993) J Mol Biol 230: 400–412

    Google Scholar 

  25. Read D & Manley JL (1992) EMBO 11: 1035–1044

    Google Scholar 

  26. DiBello PR, Withes DA, Bayer CA, Fristoom JW & Guild GM (1991) Genetics 129: 385–397

    Google Scholar 

  27. Hsu T, Gogos JA, Kirsh SA & Kafatos FC (1992) Science 257: 1946–1950

    Google Scholar 

  28. Morishita K, Parganas E, Douglass E & Ihle JN (1990) Oncogene 5: 963–971

    Google Scholar 

  29. Bordereaux D, Fichelson S, Tambourin P & Gisselbrecht S (1990) Oncogene 5: 925–927

    Google Scholar 

  30. Haber DA, Sohn RI, Buckler AJ, Pelletier J, Call KM & Housman DE (1991) Proc Natl Acad Sci USA 88: 9618–9622

    Google Scholar 

  31. Bickmore WA, Oghene K, Little MH, Seawright A, van Heyningen V & Hastie ND (1992) Science 257: 235–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köster, M., Hille, S., Pieler, T. et al. Gene structure and alternative splicing of XFG 5-1, a X. laevis Zn finger protein with RNA homopolymer binding activity. Mol Biol Rep 18, 197–207 (1993). https://doi.org/10.1007/BF01674431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01674431

Key words

Navigation