Skip to main content

Advertisement

Log in

The control of the production process of phytoplankton by the physical structure of the aquatic environment with special reference to its optical properties

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

This tutorial was designed for nonbiologists requiring an introduction to the nature and general timescales of phytoplankton responses to physical forcing in aquatic environments. As such, an effort was made to highlight biological markers which might assist in identifying, measuring and/or validating physical processes controlling the variability in the distribution, abundance, composition and activity of phytoplankton communities. Given the recent advances in environmental optics and remote sensing capabilities, a special emphasis was placed on the nature and utility of phytoplankton optical properties in current bio-optical modelling efforts to predict temporal and spatial variability in phytoplankton productivity and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge, A. L. and M. W. Silver, 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanog. 20:41–82.

    Google Scholar 

  • Atlas, T. U. and T.-T. Bannister, 1980. Dependence of mean spectral light extinction coefficent of phytoplankton on depth, water color, and species. Limnol. Oceanogr. 25:157–159.

    Google Scholar 

  • Baker, K. S., R. C. Smith, R. R. Bidigare, B. B. Prézelin and M. R. Lewis, 1990. A bio-optical model for the prediction of phytoplankton productivity during Fronts '85 and Watercolors '88. EOS 71:147.

    Google Scholar 

  • Bannister, T. T., 1974. Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnol. Oceanogr. 19:1–12.

    Google Scholar 

  • Bannister, T. T. and A. D. Weidemann, 1984. The maximum quantum yield of phytoplankton photosynthesis in situ. J. Plankt. Res. 6:275–294.

    Google Scholar 

  • Banse, K., 1990. On pelagic food web interactions in large water bodies. In: Large Lakes. Ecological Structure and Function. (M. M. Tilzer and C. Serruya, eds.) pp. 556–579. Brock/Springer Series in Contemporary Biosciences. Springer-Verlag, Berlin.

    Google Scholar 

  • Barrett, J. and S. W. Thorne, 1980. Isolation of a F694-chlorophyl a-protein complex with low fluorescence yield from brown algae. FEBS Lett. 120:24–28.

    Google Scholar 

  • Bidigare, R. R., J. Marra, T. D. Dickey, R. Iturriaga, K. S. Baker, R. C. Smith, P. Hasong, 1990a. Evidence for phytoplankton succession and chromatic adaptation in the Sargasso Sea during spring 1985. Mar. Ecol. Prog. Ser. 60:113–122.

    Google Scholar 

  • Bidigare, R. R., J. H. Morrow and D. A. Kiefer, 1989. Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea. J. Mar. Res. 47:323–341.

    Google Scholar 

  • Bidigare, R. R., M. E. Ondrusek, J. H. Morrow, D. A. Kiefer, 1990b. In vivo absorption properties of algal pigments. SPIE Ocean Optics, 1302:290–302.

    Google Scholar 

  • Bidigare, R. R., O. Schofield and B. B. Prézelin, 1989. Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH 7803 (DC2). Mar. Ecol. Prog. Ser. 56:177–188.

    Google Scholar 

  • Bidigare, R. R., R. C. Smith, K. S. Baker and J. Marra, 1987. Oceanic primary production estimates from mesurements of spectra irradiance and pigment concentration. Biochem. Cycles 1:171–186.

    Google Scholar 

  • Bindloss, M., 1974. Primary productivity in Loch Leven, Kinross. Proc. Roy. Soc. Edinburgh [B] 74:157–181.

    Google Scholar 

  • Boczar, B. A. and B. B. Prézelin, 1986. Light and MgCl2-dependent characteristics of four chlorophyll-protein complexes from the marine dinoflagellate, Glenodinium sp. Biochem. Biophys. Acta 850:300–309.

    Google Scholar 

  • Boczar, B. A., B. B. Prézelin, H. A. Matlick, 1990. In situ photosynthetic physiology in chlorophyll-protein biochemistry of two dinoflagellate blooms. Br. Phycol. J 25:157–168.

    Google Scholar 

  • Boney, A. D., 1975. Phytoplankton. Edward Arnold, London. 116 p.

    Google Scholar 

  • Boucher, N. P., O. Schofield, H. A. Matlick, B. B. Prézelin, R. C. Smith and R. R. Bidigare, 1990. Patterns of primary productivity and photosynthesis-irradiance parameters across the Southern California Bight during Watercolors '88 Cruise. EOS 71:146.

    Google Scholar 

  • Brook, J. E., 1964. Acclimation to light intensity in two species of marine phytoplankton, Dunaliella tertiolecta Butcher and Skeletonema (Greve.) 30 pp. MS thesis, University of Southern California.

  • Cota, G. F., 1985. Photoadaptations of high Arctic ice algae. Nature 315:219–222.

    Google Scholar 

  • Cullen, J. J., 1990. On models of growth and photosynthesis in phytoplankton. Deep Sea Res. 17:667–683.

    Google Scholar 

  • Cullen, J. J. and M. R. Lewis, 1988. The kinetics of algal photoadaptation in the context of vertical mixing. J. Plankt. Res. 10:1039–1063.

    Google Scholar 

  • Dennis, D. T. and D. H. Turpin, 1990. Plant Physiology, Biochemistry and Molecular Biology. Longman Scientific and Technical, Essex. 529 p.

    Google Scholar 

  • Dubinsky, Z. and T. Berman, 1976. Light utilization efficiencies of phytoplankton in Lake Kinneret (Sea of Galilee). Limnol. Oceanogr. 21:226–230.

    Google Scholar 

  • Dubinsky, Z. and T. Berman, 1981. Light utilization by phytoplankton in Lake Kinneret (Israel). Limnol. Oceanogr. 26:660–670.

    Google Scholar 

  • Dubinsky, Z., P. G. Falkowski and K. Wyman, 1986. Light harvesting and utilization by phytoplankton. Plant Cell Physiol. 27:1335–1349.

    Google Scholar 

  • Edmunds, L. N. Jr., 1988. Cellular and Molecular Bases of Biological Clocks. Springer-Verlag, N. Y. p. 497.

    Google Scholar 

  • Emerson, R. and C. M. Lewis, 1942. The photosynthetic efficiency of phycocyanin in Chrococcus and the problem of carotenoid participation in photosynthesis. J. Gen. Physiol. 25:579–595.

    Google Scholar 

  • Eppley, R. W., 1981. Relations between nutrient assimilation and growth of phytoplankton with a brief review of estimates of growth rate in the ocean. In: Physiological Bases of Phytoplankton Ecology (T. Platt, ed.) Can. Bull. Fish. Aquat. Sci. 210:215–263.

    Google Scholar 

  • Eppley, R. W., 1980. Estimating phytoplankton growth rates in the central oligotrophic oceans. In: Primary Productivity in the Sea. (P. G. Falkowski, ed.) pp. 231–242. Plenum Press, N. Y.

    Google Scholar 

  • Falkowski, P. G., 1980. Light-shade adaptation in marine phytoplankton. In: Primary Productivity in the Sea. (P. G. Falkowski, ed.) pp. 99–119. Plenum Press, N. Y.

    Google Scholar 

  • Falkowski, P. G., 1984. Kinetics of adaptation to irradiance in Dunaliella tertiolecta. Photosynthetica 18:62–68.

    Google Scholar 

  • Falkowski, P. G., Z. Dubinsky and K. Wyman, 1985. Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30:311–321.

    Google Scholar 

  • Falkowski, P. G. and T. G. Owens, 1978. Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton. Mar. Biol. 45:289–295.

    Google Scholar 

  • Faust, M. A. and K. H. Norris, 1985. In vivo spectrophotometric analysis of photosynthetic pigments in natural population of phytoplankton. Limnol. Oceanogr. 30:1316–1322.

    Google Scholar 

  • Fee, E. J., 1975. The importance of diurnal variation of photosynthesis vs light curves to estimates of integral primary production. Verh. int. Verein Theor. Angew. Limnol. 19:39–46.

    Google Scholar 

  • Fleischhacker, P. and H. Senger, 1978. Adaptation of the photosynthetic apparatus of Scenedesmus obliquus to strong and weak light conditions. II. Physiol. Plant. 43:43–51.

    Google Scholar 

  • Fork, D. C., 1976. Temperature dependence of chlorophyll a fluorescence in algae and higher plants in relation to changes of state in the photosynthetic apparatus. Carnegie Year Book, p. 465–472.

  • Fork, D. C. and N. Murata, 1977. The effect of temperature on the physical phase of chloroplast membrane lipids and photosynthesis. Carnegie Year Book, p. 220–228.

  • Fork, D. C., N. Murata and N. Sato, 1979. Effect of growth temperature on the lipid and fatty acid composition, and the dependence on temperature of light-induced redox reactions of cytochrome f and of light energy redistribution, in the thermophilic bluegreen alga Synechoccus lividus. Plant Physiol. 63:524–529.

    Google Scholar 

  • Gallegos, C. L. and T. Platt, 1981. Photosynthesis measurements on natural populations of phytoplankton: numerical analysis. In: Physiological Bases of Phytoplankton Ecology (T. Platt, ed.) Can. Bull. Fish. Aquat. Sci. 210:103–112.

    Google Scholar 

  • Geider, R. J., T. Platt and J. A. Raven, 1986. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar. Ecol. Prog. Ser. 30:93–104.

    Google Scholar 

  • Glover, H. E. and C. Garside, 1990. Responses of oceanic picophytoplankton to nanomolar nitrate perturbations. EOS 71:161.

    Google Scholar 

  • Glover, H. E., B. B. Prézelin, L. Campbell and M. Wyman, 1988. Pico- and ultraplankton Sargasso Sea communities: variability and comparative distributions of Synechococcus spp. and algae. Mar. Ecol. Prog. Ser. 49:127–139.

    Google Scholar 

  • Haardt, H. and H. Maske, 1987. Specific in vivo absorption coefficient of chlorophyll a at 675 nm. Limnol. Oceanogr. 32:608–619.

    Google Scholar 

  • Hall, D. O. and K. K. Rao, 1977. Photosynthesis. Studies in Biology no. 37. Edward Arnold, 71 p.

  • Harding, L. W. J., B. B. Prézelin, B. M. Sweeney and J. L. Cox, 1982. Primary production as influenced by diel periodicity of phytoplankton photosynthesis. Mar. Biol. 67:179–186.

    Google Scholar 

  • Harris, G. P., 1980a. The measurement of photosynthesis in natural populations of phytoplankton. In: The Physiological Ecology of Phytoplankton. (I. Morris, ed.) pp. 129–187. Univ. of California Press, Berkely.

    Google Scholar 

  • Harris, G. P., 1980b. Spatial and temporal scales in phytoplankton ecology. Mechanisms, methods, models and management. Can. J. Fish. Aquat. Sci. 37:877–900.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology. Structure, function and fluctuation. Chapman and Hall, London. 384 p.

    Google Scholar 

  • Harris, G. P. and B. B. Piccinin, 1977. Photosynthesis by natural phytoplankton populations. Arch. Hydrobiol. 80:405–457.

    Google Scholar 

  • Hipkins, M. F. and N. R. Baker, 1986. Photosynthesis Energy Transduction-A Practical Approach. IRL Press, Oxford. 199 p.

    Google Scholar 

  • Hutchinson, G. E., 1957. A Treatise on Limnology. Vol. 1. John Wiley and Sons, N. Y. 1067 p.

    Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology. Vol. 2. John Wiley and Sons, N. Y. 1115 p.

    Google Scholar 

  • Imberger, J., 1985a. Thermal characteristics of standing waters: An illustration of dynamic processes. Hydrobiologia 125:7–29.

    Google Scholar 

  • Imberger, J., 1985b. The diurnal mixed layer. Limnol. Oceanogr. 30:737–770.

    Google Scholar 

  • Iturriaga, R., B. G. Mitchel and D. A. Kiefer, 1988. Microphotometric analysis of individual particle absorption spectra. Limnol. Oceanogr. 33:128–135.

    Google Scholar 

  • Iturriaga, R. and D. Siegel, 1989. Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea. Limnol. Oceanogr. 34:1706–1726.

    Google Scholar 

  • Jassby, A. T. and T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21:540–547.

    Google Scholar 

  • Jeffrey, S. W., 1980. Algal Pigment Systems. In: Primary Productivity in the Sea. (P. G. Falkowski, ed.) pp. 33–58. Plenum Press, N. Y.

    Google Scholar 

  • Jerlov, N. G., 1976. Marine Optics. Elsevier Scientific. Publ. Amsterdam, 231 p.

    Google Scholar 

  • Jewson, D. H., 1976. The interaction of components controlling net phytoplankton photosynthesis in a well mixed lake (Lough Neagh, Northern Ireland). Freshwater Biol. 6:551–576.

    Google Scholar 

  • Kiefer, D. A. and G. B. Mitchell, 1983. A simple steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnol. Oceanogr. 28:770–776.

    Google Scholar 

  • Kiefer, D. A. and J. B. Soohoo, 1982. Spectral absorption by marine particles. Limnol. Oceanogr. 27:492–499.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge. 401 p.

    Google Scholar 

  • Kishino, M., N. Okami, M. Takahashi and S. Ichimura, 1985. Light utilization efficiency and quantum yield of phytoplankton in a thermally stratified sea. Limnol. Oceanogr. 31:557–566.

    Google Scholar 

  • Koblentz-Mishke, O. J., V. V. Volkovinsly and J. G. Kabanova, 1970. Plankton primary production of the world ocean. In: Scientific Exploration of the South Pacific, pp. 183–193; Standard Book No. 309-07155-6. Nat. Acad. Sci., Washington, D. C.

    Google Scholar 

  • Kolmogorov, A. N., 1941. The local structure of turbulence viscous fluid for very large Renyolds number. Dokl. Akad. Nauk. USSR 30:299–303.

    Google Scholar 

  • Laws, E. A. and T. T. Bannister, 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25:457–473.

    Google Scholar 

  • Lewis, W. M. 1976. Surface/volume ratios: Implications for phytoplankton morphology. Science 192:885–887.

    Google Scholar 

  • Lewis, M. R., J. J. Cullen and T. Platt, 1984a. Relationships between vertical mixing and photoadaptation of phytoplankton: similarity criteria. Mar. Ecol. Prog. Ser. 15:141–149.

    Google Scholar 

  • Lewis, M. R., E. P. W. Horne, J. J. Cullen, N. S. Oakey and T. Platt, 1984b. Turbulent motions may control phytoplankton photosynthesis in the upper ocean. Nature 311:49–50.

    Google Scholar 

  • Lewis, M. R., R. E. Warnock, B. Irwin and T. Platt, 1985a. Measuring photosynthetic action spectra of natural phytoplankton populations. J. Phycol. 21:310–315.

    Google Scholar 

  • Lewis, M. R., R. E. Warnock and T. Platt, 1985b. Absorption and photosynthetic action spectra for natural phytoplankton populations: Implications for production in the open ocean. Limnol. Oceanogr. 30:794–806.

    Google Scholar 

  • Littler, M. M., D. S. Littler, S. M. Blair and J. N. Norris, 1985. Deepest known plant life discovered on an uncharted seamount. Science 227:57–59.

    Google Scholar 

  • MacCaull, W. A. and T. Platt, 1977. Diel variations in the photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 22:723–731.

    Google Scholar 

  • Marra, J., 1980. Time course of light intensity adaptation in a marine diatom. Mar. Biol. Lett. 1:175–183.

    Google Scholar 

  • Megard, R. O., W. S. Combs, P. D. Smith and A. S. Knoll, 1979. Attenuation of light and daily integral rate of photosynthesis attained by planktonic algae. Limnol. Oceanogr. 24:1038–1050.

    Google Scholar 

  • Morel, A., 1978. Available, usable and stored radiant energy in relation to marine photosynthesis. Deep Sea Res. 25:673–688.

    Google Scholar 

  • Morel, A. and A. Bricaud, 1986. Inherent properties of algal cells including picoplankton. In: Photosynthetic Picoplankton, (T. Platt and W. K. W. Li, eds.). Can. Bull. Fish. Aquat. Sci. 214:521–559.

    Google Scholar 

  • Morel, A., L. Lazarra and J. Gostan, 1987. Growth rate and quantum yield response for a diatom to changing irradiances (energy and color). Limnol. Oceanogr. 32:1066–1084.

    Google Scholar 

  • Morel, A. and R. C. Smith, 1974. Relation between total quanta and total energy for aquatic photosynthesis. Limnol. Oceanogr. 19:589–600.

    Google Scholar 

  • Morris, I. (ed.), 1980. The Physiological Ecology of Phytoplankton. Blackwell Sci. Publ., Berkley. 625 p.

    Google Scholar 

  • Morrow, J. H., W. S. Chamberlain and D. A. Kiefer, 1989. A two-component description of spectral absorption by marine particles. Limnol. Oceanogr. 34:1500–1509.

    Google Scholar 

  • Neale, P. J. and P. J. Richerson, 1987. Photoinhibition and the diurnal variation of phytoplankton photosynthesis-I. Development of a photosynthesis-irradiance model from studies of in situ responses. J. Plankt. Res. 9:167–193.

    Google Scholar 

  • Nelson, N. B. and B. B. Prézelin, 1990. Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (= Glenodinium sp.). Mar. Ecol. Prog. Ser. 63:37–46.

    Google Scholar 

  • Nelson, N. B., B. B. Prézelin, R. R. Bidigare, R. C. Smith and K. S. Baker, 1991. Spatial and temporal variability of phytoplankton spectral absorption properties in the Southern California Bight. Deep-Sea Res. (submitted).

  • O'Carra, P. and C. O'heocha, 1976. Algal biliproteins and phycobilins. In: Chemistry and Biochemistry of Plant Pigments, (T. W. Goodwin, ed.). pp. 328–376. Academic Press, London.

    Google Scholar 

  • Palmisaro, A. C., J. B. SooHoo and C. W. Sullivan, 1985 a. Photosynthesis-irradiance relationships in sea ice microalgae from McMurdo Sound, Antarctica. J. Phycol. 21:341–346.

    Google Scholar 

  • Palmisaro, A. C., J. B. SooHoo, D. C. White, G. A. Smith, G. R. Stanton and L. H. Buckle, 1985b. Shade adapted benthic diatoms beneath Antarctic Sea Ice. J. Phycol. 21:664–667.

    Google Scholar 

  • Palmisaro, A. C. and C. W. Sullivan, 1982. Physiology of sea ice diatoms. I. Response of three polar diatoms to a simulated summer winter transition. J. Phycol. 18:489–498.

    Google Scholar 

  • Parsons, T. R., M. Takahashi and B. Hargrave, 1984. Biological Oceanographic Processes. 3rd Ed. Pergamon Press, Oxford. total page no.

    Google Scholar 

  • Pasciak, W. J. and J. Garvis, 1974. Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19:881–889.

    Google Scholar 

  • Pittendrigh, C. S., 1981. Circadian organization and the photoperiodic phenomena. In: Biological Clocks in Seasonal Reproductive Cycles. (B. K. Follet and D. E. Follet, eds.) pp. 1–35. John Wiley and Sons (Halsted Press), N. Y.

    Google Scholar 

  • Platt, T. (ed.), 1981. Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. Aquat. Sci. 210:1–346.

  • Platt, T., C. C. Gallegos, W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38:687–701.

    Google Scholar 

  • Platt, T. and A. D. Jassby, 1976. The relationship between photosynthesis and light for natural assemblages of coastal Maine phytoplankton. J. Phycol. 12:421–430.

    Google Scholar 

  • Platt, T. and W. K. W. Li (eds.), 1986. Photosynthetic Picoplankton. Can. Bull. Fish. Aquat. Sci. 214:583 p.

  • Platt, T. and S. Sathyendranath, 1988. Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–1620.

    Google Scholar 

  • Post, A. F., Z. Dubinsky, K. Wyman and P. G. Falkowski, 1984. Kinetics of light-intensity adaptation in a marine planktonic diatom.

  • Post, A. F., Z. Dubinsky, K. Wyman and P. G. Falkowski, 1985. Physiological responses of a marine planktonic diatom to transitions in growth irradiance. Mar. Ecol. Prog. Ser. 25:141–149.

    Google Scholar 

  • Prézelin, B. B., 1981. Light Reactions in Photosynhesis. In: Physiological Bases of Phytoplankton Ecology (T. Platt, ed.) Can. Bull. Fish. Aquat. Sci. 210:1–43.

    Google Scholar 

  • Prézelin, B. B., 1987. The photosynthetic physiology of dinoflagellates. In: The Biology of Dinoflagellates (M. Taylor, ed.). pp. 174–223. Blackwell Publ, NY.

    Google Scholar 

  • Prézelin, B. B., 1991. Diel periodicity in phytoplankton productivity. Hydrobiologia (submitted).

  • Prézelin, B. B. and R. S. Alberte, 1978. Photosynthetic characteristics and the organization of chlorophyll in marine dinoflagellates. PNAS 75:1801–1804.

    Google Scholar 

  • Prézelin, B. B., R. R. Bidigare, H. A. Matlick, M. Putt and B. M. Ver Hoven, 1987. Diurnal patterns of size-fractioned primary productivity across a coastal front. Mar. Biol. 4:563–574.

    Google Scholar 

  • Prézelin, B. B., R. R. Bidigare, R. C. Smith, M. R. Lewis and K. S. Baker, 1990. Biological oceanography in the Southern California Bight during Watercolors '88. EOS 71:121.

    Google Scholar 

  • Prézelin, B. B. and B. A. Boczar, 1986. Molecular bases of phytoplankton spectral properties, and their potential applications to studies in optical oceanography. In: Progress in Phycological Research. (F. Round and D. Chapman, eds.) pp. 349–464. Biopress Limited, Bristol.

    Google Scholar 

  • Prézelin, B. B. and H. E. Glover, 1991. Short-term variability in estimates of algal biomass and productivity rates for two stations in the Sargasso Sea. J. Plankton Res. 13:45–67.

    Google Scholar 

  • Prézelin, B. B., H. E. Glover, B. M. Ver Hoven, D. Steinberg, H. A. Matlick, O. Schofield, N. Nelson, M. Wyman and L. Campbell, 1989. Blue-green light effects on light-limited rates of photosynthesis: relationship to pigmentation and productivity estimates for Synechococcus populations from the Sargasso Sea. Mar. Ecol. Prog. Ser. 54:121–136.

    Google Scholar 

  • Prézelin, B. B. and F. T. Haxo, 1976. Purification and characterization of peridinin-chlorophyll a proteins from the marine dinoflagellates Glenodinium sp. and Gonyaulax polyedra. Planta 128:131–133.

    Google Scholar 

  • Prézelin, B. B. and H. A. Matlick, 1980. Time-course of photoadaptation in the photosynthesis-irradiance relationship of a dinoflagellate exhibiting photosynthetic periodicity. Mar. Biol. 58:85–96.

    Google Scholar 

  • Prézelin, B. B. and H. A. Matlick, 1983. Nutrient-dependent low light adaptation in the dinoflagellate, Gonyaulax polyedra. Mar. Biol. 74:141–150.

    Google Scholar 

  • Prézelin, B. B. and N. B. Nelson, 1990. The formation of ATP and reducing power in the light. In: Plant Physiology, Biochemistry and Molecular Biology (D. T. Dennis and D. H. Turpin, eds.) pp. 212–223. Longman Scientific and Technical, Essex.

    Google Scholar 

  • Prézelin, B. B., G. Samuelsson and H. A. Matlick, 1986. Nutrient-dependent kinetics of photosynthesis parameters and photoinhibition of photosystem II during high light photoadaptation in Gonyaulax polyedra. Mar. Biol. 93:1–12.

    Google Scholar 

  • Priscu, J. C., 1984. In situ quantum yield of phytoplankton in a subalpine lake. J. Plankton Res. 6:531–542.

    Google Scholar 

  • Putt, M. and B. B. Prézelin, 1988. Diel periodicity of photosynthesis and cell division compared in Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 24:315–325.

    Google Scholar 

  • Quentin, L. B. and R. M. Ross, 1985. Feeding by Euphausia superba: does size matter? In: Antarctic nutrient cycles and food webs. (Siegfried, W. R., Condy, P. R., Laws, R. W., eds.). pp. 372–377. Springer, Berlin, Heidelberg and New York.

    Google Scholar 

  • Rapp, P. E., 1979. An atlas of cellular oscillators. In: Cellular Oscillators. (M. J. Berridge, Rapp, P. E. and J. E. Treherne, eds.) pp. 281–306. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Raven, J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Photosynthetic Picoplankton. (T. Platt and W. K. W. Li, eds.) Can. Bull. Fish. Aquat. Sci. 214:1–70.

    Google Scholar 

  • Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biol. 14:111–142.

    Google Scholar 

  • Reynolds, C. S., R. D. Oliver and A. E. Walsby, 1987. Cynobacterial dominance: the role of buoyancy regulation on dynamic lake environment. New Zealand J. Mer. Freshwat. Res. 21:379–390.

    Google Scholar 

  • Richardson, K., J. Beardall and J. A. Raven, 1983. Adaptation of unicellular algae to irradiance. An analysis of strategies. New Phytol. 93:157–191.

    Google Scholar 

  • Rivkin, R. B., M. A. Voytek and H. H. Seliger, 1982. Strategies of phytoplankton division rates in light limited environments. Science 215:1123–1125.

    Google Scholar 

  • Sakshaug, E., D. A. Kiefer, S. K. Anderson, 1989. A steady state description of growth and light absorption of the marine planktonic diatom Skeletonema costatum. Limnol. Oceanogr. 34:198–205.

    Google Scholar 

  • Sathyendranath, S., L. Lazzara and L. Prieur, 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnol. Oceanogr. 32:403–415.

    Google Scholar 

  • Sathyendranath, S., T. Platt, C. M. Caverhill, R. E. Warnock and M. R. Lewis, 1989. Remote sensing of ocean primary production: Computations using a spectral model. Deep-Sea Res. 36:431–453.

    Google Scholar 

  • Satoh, K. and W. L. Butler, 1978. Low-temperature spectral properties of subchloroplast fractions purified from spinach. Plant Physiol. 61:373–379.

    Google Scholar 

  • Schofield, O., R. R. Bidigare and B. B. Prézelin, 1990. Spectral photosynthesis, quantum yield and blue-green enhancement of productivity rates in the diatom Chaetoceros gracile and the prymesiophyte Emiliania huxleyi. Mar. Ecol. Prog. Ser. 64:175–186.

    Google Scholar 

  • Schofield, O., B. B. Prézelin, R. C. Smith, P. M. Stegmann, N. B. Nelson, M. R. Lewis and K. S. Baker, 1991. Spectral photosynthesis, quantum yield and radiation utilization efficiency in the Southern California Counter Current. Mar. Ecol. Prog. Ser. (submitted).

  • Sephton, D. H. and G. P. Harris, 1984. Physical variability and phytoplankton communities. VI. Day to day changes in primary productivity and species abundance. Arch. Hydrobiol. 102:155–175.

    Google Scholar 

  • Senger, H. (ed.), 1987. Blue Light Responses: phenomena and occurrence in plants and microorganisms. CRC Press, Boca Raton. 160 p.

    Google Scholar 

  • Senger, H. and P. Fleischhacker, 1978. Adaptation of the photosynthetic apparatus of Scenedesmus obliquus to strong and weak light conditions. I. Physiol. Plant. 43:35–42.

    Google Scholar 

  • Shuter, B., 1979. A model of physiological adaptation in unicellular algae. J. Theor. Biol. 78:519–552.

    Google Scholar 

  • Sloan, A., R. R. Bidigare and M. E. Ondrusek, 1990. Spatial variations and temporal evolution of algal pigment distribution in the Southern California Bight. EOS 71:146.

    Google Scholar 

  • Smith, R. C. and K. S. Baker, 1978. Optical classification of natural waters. Limnol. Oceanogr. 23:260–267.

    Google Scholar 

  • Smith, R. C., R. R. Bidigare, B. B. Prézelin, K. S, Baker and J. M. Brooks, 1987. Optical characterization of primary productivity across a coastal front. Mar. Biol. 96:575–591.

    Google Scholar 

  • Smith, R. C., B. B. Prézelin, R. R. Bidigare and K. S. Baker, 1989. Bio-optical modeling of photosynthetic production in coastal waters. Limnol. Oceanogr. 38:1526–1546.

    Google Scholar 

  • Smith, R. C., B. B. Prézelin, R. R. Bidigare, M. R. Lewis and K. S. Baker, 1990. Bio-optical modeling of phytoplankton productivity in the Southern California Bight during times of variable upwelling. EOS 71:121.

    Google Scholar 

  • Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition. A case-study for a deep nutrient-rich lake. Progress in Phycol. Res. 5:123–178.

    Google Scholar 

  • Sommer, U., 1989. Toward a Darwinian ecology of plankton. In: Plankton Ecology. Succession in plankton communities. (U. Sommer, ed.) pp. 1–8. Springer-Verlag, Berlin.

    Google Scholar 

  • Sournia, A., 1974. Circadian periodicities in natural populations of marine phytoplankton. Adv. Mar. Biol., 12:325–389.

    Google Scholar 

  • Sournia, A., 1991. Morphological bases of competion and succession. In: Physiological Bases of Phytoplankton Ecology (T. Platt, ed.) Can. Bull. Fish. Aquat. Sci. 210:339–346.

    Google Scholar 

  • Steemann Nielsen, E. and E. G. Jørgensen, 1962. The adaptation to different light intensities inChlorella vulgaris and the time dependence on transfer to a new light intensity. Physiologia Pl. 15:505–513.

    Google Scholar 

  • Stewart, W. D. P. (ed.), 1974. Algal Physiology and Biochemistry. Univ. California Press, Berkeley. 989 p.

    Google Scholar 

  • Stockner, J. G., Anitia, N. J., 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43:2472–2503.

    Google Scholar 

  • Sweeney, B. M. 1987. Rythmic Phenomena in Plants (2nd ed) Academic Press, NY pp. 172.

    Google Scholar 

  • Sweeney, B. M. and M. B. Borgese, 1989. A circadian rhythm in cell division in a prokaryote, the cyanobacterium Synechococcus WH 7803. J. Phycol. 25:183–186.

    Google Scholar 

  • Sze, P., 1986. The Biology of the Algae. Wm. C. Brown, Dubuque, Iowa, 251 p.

    Google Scholar 

  • Takahashi, M. and P. K. Bienfang, 1983. Size structure of phytoplankton biomass and photosynthesis in subtropical and tropical Hawaiian waters. Mar. Biol. 76:203–211.

    Google Scholar 

  • Talling J. F., 1957a. The phytoplankton as a compound photosynthetic system. New Phytol. 56:133–149.

    Google Scholar 

  • Talling, J. F., 1957b. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56:29–50.

    Google Scholar 

  • Talling, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. Internat. Ver. Limnol. 19:214–243.

    Google Scholar 

  • Talling, J. F., 1979. Factor interactions and implications for the prediction of lake metabolism. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13:96–109.

    Google Scholar 

  • Tanada, T., 1951. The photosynthetic efficiency of carotenoid pigments in Navicula minima. Am. J. Bot. 38:276–283.

    Google Scholar 

  • Thornber, J. P. and R. S. Alberte, 1977. The organization of chlorophyll in vivo. In: Photosynthesis I: Photosynthetic Electron Transport and Photophosphorylation, (A. Trebst and M. Avron, eds.). pp. 574–582. Springer-Verlag, Berlin.

    Google Scholar 

  • Tilman, T. U., 1988. Resource competition between planktonic algae: experimental and theoretical approach. Ecology 62:802–815.

    Google Scholar 

  • Tilzer, M. M., 1973a. Diurnal periodicity in phytoplankton from a high mountain lake. Limnol. Oceanogr. 18:15–30.

    Google Scholar 

  • Tilzer, M. M., 1973b. Die Dynamik der planktischen Urproduktion unter den Extrembedingungen des Hochgebirgssees. In: Ökosystemforschung (H. Ellenberg, ed.), pp. 51–59. Springer-Verlag, Berlin.

    Google Scholar 

  • Tilzer, M. M., 1983. The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol. Oceanogr. 28:833–846.

    Google Scholar 

  • Tilzer, M. M., 1984a. Estimates of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J. Plankton Res. 6:309–324.

    Google Scholar 

  • Tilzer, M. M., 1984b. The quantum yield as a fundamental parameter controlling vertical photosynthetic profiles in Lake Constance. Arch. Hydrobiol., Suppl. 69:169–198.

    Google Scholar 

  • Tilzer, M. M., 1989a. The productivity of phytoplankton and its control by resource availability. In: Phycotalk, (H. D. Kumar, ed.) pp. 1–40. Rastogi and Co. Meerut.

    Google Scholar 

  • Tilzer, M. M., 1989b. Distinction between light-mediated and light-independent variations in phytoplankton production rates. In: Production and Pathways of Freshly Produced Organic Matter within the Pelagic Zone (M. M. Tilzer, ed.). Hydrobiol. 173:135–140.

    Google Scholar 

  • Tilzer, M. M., 1990. Environmental and physiological control of phytoplankton productivity in large lakes. In: Large Lakes. Ecological Structure and Function (M. M. Tilzer and C. Serruya, eds.) pp. 339–367. Brock/Springer Series in Contemporary Biosciences. Springer-Verlag, Berlin.

    Google Scholar 

  • Tilzer, M. M. and B. Beese, 1988. The seasonal productivity cycle and controlling factors in Lake Constance. Schweiz. Z. Hydrologie 50:1–39.

    Google Scholar 

  • Tilzer, M. M., M. Elbrächter, W. W. Gieskes, B. Beese, 1986. Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol. 5:105–111.

    Google Scholar 

  • Tilzer, M. M. and C. R. Goldman, 1978. Importance of mixing, thermal stratification and light adaptation for phytoplankton productivity in Lake Tahoe (California-Nevada). Ecology 59:810–821.

    Google Scholar 

  • Tilzer, M. M., C. R. Goldman and E. de Amezaga, 1975. The efficiency of photosynthetic light energy utilization by lake phytoplankton. Verh. int. Ver. Limnol. 19:800–807.

    Google Scholar 

  • Tyler, J. E., 1975. The in situ quantum efficiency of natural phytoplankton populations. Limnol. Oceanogr. 20:976–980.

    Google Scholar 

  • Walsby, A. E., 1975. Gas vesicles. Ann. Rev. Plant Physiol. 26:427–439.

    Google Scholar 

  • Westlake, D. F., 1980. Phytoplankton productivity. In: The Functioning of Freshwater Ecosystems, (E. D. Le Cren and R. H. Lowe-McConnell, eds.) Cambridge University Press.

  • Wetzel, R. G., 1983. Limnology. 2nd Edition, Saunders. Philadelphia. 767 p.

    Google Scholar 

  • Yentsch, C. M. and C. S. Yentsch, 1984. Emergence of optical instrumentation for measuring biological parameters. Oceanogr. Mar. Ann. Rev. 22:55–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prézelin, B.B., Tilzer, M.M., Schofield, O. et al. The control of the production process of phytoplankton by the physical structure of the aquatic environment with special reference to its optical properties. Aquatic Science 53, 136–186 (1991). https://doi.org/10.1007/BF00877058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877058

Key words

Navigation