Skip to main content
Log in

Molecular characterization of a novel, nuclear-encoded, NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L.

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Angiosperms and algae possess two distinct glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes, an NAD+-dependent tetramer involved in cytosolic glycolysis and an NADP+-dependent enzyme of the Calvin cycle in chloroplasts. We have found that the gymnosperm Pinus sylvestris possesses, in addition to these, a nuclear-encoded, plastid-specific, NAD+-dependent GAPDH, designated GapCp, which has not previously been described from any plant. Several independent full-size cDNAs for this enzyme were isolated which encode a functional transit peptide and mature subunit very similar to that of cytosolic GAPDH of angiosperms and algae. A molecular phylogeny reveals that chloroplast GapCp and cytosolic GapC arose through gene duplication early in chlorophyte evolution. The GapCp gene is expressed as highly as that for GapC in light-grown pine seedlings. These findings suggest that aspects of compartmentalized sugar phosphate metabolism may differ in angiosperms and gymnosperms and furthermore underscore the contributions of endosymbiotic gene transfer and gene duplication to the nuclear complement of genes for enzymes of plant primary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansorge W, Sproat BS, Stegemann J, Schwager C: A non-radioactive automated method for DNA sequence determination. J Biochem Biophys Meth 13: 315–323 (1986).

    Article  PubMed  Google Scholar 

  2. Bartlett SG, Grossmann AR, Chua N-H: In vitro synthesis and uptake of cytoplasmically-synthesized chloroplast proteins. In: Edelmann M, Hallick RB, Chua N-H (eds) Methods in Chloroplast Molecular Biology, pp. 1081–1092. Elsevier Biomedical Press, Amsterdam (1982).

    Google Scholar 

  3. Brinkmann H, Martinez P, Quigley F, Martin W, Cerff R: Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Evol 26: 24–33 (1987).

    PubMed  Google Scholar 

  4. Brinkmann H, Cerff R, Salomon M, Soll J: Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. Plant Mol Biol 13: 81–94 (1989).

    Article  Google Scholar 

  5. Buchanan BB: Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31: 341–374 (1980).

    Article  Google Scholar 

  6. Cerff R: Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenases from higher plants. In: Edelmann M, Hallick RB, Chua N-H (eds) Methods in Chloroplast Molecular Biology, pp. 683–694. Elsevier Biomedical Press, Amsterdam (1982).

    Google Scholar 

  7. Cerff R, Chambers S: Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases (EC 1.2.1.12 and 1.2.1.13). J Biol Chem 254: 6094–6098 (1979).

    PubMed  Google Scholar 

  8. Cerff R, Kloppstech K: Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci USA 79: 7624–7628 (1982).

    Google Scholar 

  9. Clermont S, Corbier C, Mely Y, Gerard D, Wonacott A, Branlant G: Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold. Biochemistry 32: 10178–10184 (1993).

    PubMed  Google Scholar 

  10. Corbier C, Clermont S, Billard P, Skarzynski T, Branlant C, Wonacott A, Branlant G: Probing the coenzyme specificity of glyceraldehyde-3-phosphate dehydrogenases by site directed mutagenisis. Biochemistry 29: 7101–7106 (1990).

    PubMed  Google Scholar 

  11. Cséke C, Buchanan BB: Regulation of the formation and utilisation of photosynthate in leaves. Biochim Biophys Acta 853: 43–64 (1986).

    Google Scholar 

  12. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programms for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  13. Dewdney J, Conley TR, Shih M-C, Goodmann H: Effects of blue and red light on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana. Plant Physiol 103: 1115–1121 (1993).

    Article  PubMed  Google Scholar 

  14. Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 (1985).

    Google Scholar 

  15. Flügge U-I, Weber A, Fischer K, Lottspeich F, Eckerskorn C, Waegemann K, Soll J: The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor. Nature 353: 364–367 (1991).

    Google Scholar 

  16. Fothergill-Gilmore LA, Michels PAM: Evolution of glycolysis. Progr Biophys Mol Biol 59: 105–238 (1993).

    Article  Google Scholar 

  17. Gottlieb LD: Conservation and duplication of isozymes in plants. Science 216: 373–380 (1982).

    Google Scholar 

  18. Harris JI, Waters M: Glyceraldehyde-3-phosphate dehydrogenase. In: Boyer PD (ed) The Enzymes, Vol. 13, pp. 1–50. Academic Press, New York (1976).

    Google Scholar 

  19. Heber U, Pon NG, Heber M: Localization of carboxydismutase and trisoephosphate dehydrogenases in the chloroplast. Plant Physiol 38: 355–360 (1963).

    Google Scholar 

  20. Jansson S, Meyer-Gauen G, Cerff R, Martin W: Nucleotide distribution in gymnosperm nuclear sequences suggest a model for GC-content change in land plant nuclear genomes. J Mol Evol 39: 34–46 (1994).

    Article  PubMed  Google Scholar 

  21. Kersanach R, Brinkmann H, Liaud M-F, Zhang D-X, Martin W, Cerff R: Five identical intron positions in acient duplicated genes of eubacterial origin. Nature 367: 387–389 (1994).

    PubMed  Google Scholar 

  22. Kumada Y, Benson DR, Hillemann D, Hosted TJ, Rochefort DA, Thompson CJ, Wohlleben W, Tateno Y: Evolution of the glutamin synthase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA 90: 3009–3013 (1993).

    PubMed  Google Scholar 

  23. Levy LM, Betts GF: The physiological significance of aggregation phenomena of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from spinach chloroplasts. Biochim Biophys Acta 832: 186–191 (1985).

    Google Scholar 

  24. Liaud M-F, Valentine C, Martin W, Bouget F-Y, Kloareg B, Cerff R: The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus. J Mol Evol 38: 319–327 (1994).

    PubMed  Google Scholar 

  25. Liaud M-F, Zhang D-X, Cerff R: Differential intron loss and endosymbiotic transfer of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes to the nucleus. Proc Natl Acad Sci USA 87: 8918–8922 (1990).

    PubMed  Google Scholar 

  26. Li W-H, Wu C-I, Luo C-C: A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2: 150–174 (1985).

    PubMed  Google Scholar 

  27. Longstaff M, Raines CA, McMorrow E, Bradbeer JW, Dyer TA: Wheat phosphoglycerate kinase: evidence for recombination between the chloroplastic and cytosolic enzymes. Nucl Acids Res 17: 6569–6580 (1989).

    PubMed  Google Scholar 

  28. Macdonald FD, Buchanan BB: The reductive pentose phosphate pathway and its regulation. In: Dennis DT, Turpin DH (eds) Plant Physiology, Biochemistry and Molecular Biology, pp. 249–262. Longman, Singapore (1990).

    Google Scholar 

  29. Martinez P, Martin W, Cerff R: Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenases from maize. J Mol Biol 208: 551–565 (1989).

    PubMed  Google Scholar 

  30. Martin W, Cerff R: Prokaryotic features of a nucleus encoded enzyme: cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159: 323–331 (1986).

    PubMed  Google Scholar 

  31. Martin W, Brinkmann H, Savona C, Cerff R: Evidence for a chimaeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90: 8692–8696 (1993).

    PubMed  Google Scholar 

  32. Martin W, Gierl A, Saedler H: Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48 (1989).

    Article  Google Scholar 

  33. Martin W, Lagrange T, Li Y-F, Bisanz-Seyer C, Mache R: Hypothesis for the evolutionary origin of the chloroplast ribosomal protein L21 of spinach. Curr Genet 18: 553–556 (1990).

    PubMed  Google Scholar 

  34. Martin W, Lydiate D, Brinkmann H, Forkmann G, Saedler H, Cerff R: Molecular phylogenies in angiosperm evolution. Mol Biol Evol 10: 140–162 (1993).

    PubMed  Google Scholar 

  35. Martin W, Nock S, Meyer-Gauen G, Häger K-P, Jensen U, Cerff R: A method for isolation of cDNA-quality mRNA from immature seeds of gymnosperm rich in polyphenolics. Plant Mol Biol 22: 555–556 (1993).

    Article  PubMed  Google Scholar 

  36. Martin W, Somerville CC, Loiseaux-de Goër S: Molecular phylogenies of plastid origins and algal evolution. J Mol Evol 35: 385–403 (1992).

    Article  Google Scholar 

  37. Pelzer-Reith B, Penger A, Schnarrenberger C: Plant aldolase: cDNA and deduced amino-acid sequence of the chloroplast and cytosol enzyme from spinach. Plant Mol Biol 21: 331–340 (1993).

    PubMed  Google Scholar 

  38. Peschek GA: Respiratory electron transport. In: Fay P, van Baalen C (eds) The Cyanobacteria, pp. 119–162. Elsevier, Amsterdam (1987).

    Google Scholar 

  39. Pupillo P, Faggiani R: Subunit structure of three glyceraldehyde-3-phosphate dehydrogenases of some flowering plants. Arch Biochem Biophys 194: 581–592 (1979).

    PubMed  Google Scholar 

  40. Quigley F, Martin W, Cerff R: Intron conservation across the prokaryote-eukaryote boundry: Structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85: 2672–2676 (1988).

    PubMed  Google Scholar 

  41. Reith M, Munholland J: A high resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475 (1993).

    Article  PubMed  Google Scholar 

  42. Russell DA, Sachs MM: The maize cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family: organ-specific expression and genetic analysis. Mol Gen Genet 229: 219–228 (1991).

    Article  PubMed  Google Scholar 

  43. Saitou N, Nei M: The neighbor-joining method: a new method for the reconstruction of phylogenetic trees. Mol Biol Evol 4: 406–425 (1987).

    PubMed  Google Scholar 

  44. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  45. Scagliarini S, Trost P, Pupillo P, Valenti V: Light activation and molecular mass changes of NAD(P)-glyceraldehyde 3-phosphate dehydrogenase of spinach and maize leaves. Planta 190: 313–319 (1993).

    Article  Google Scholar 

  46. Schnarrenberger C: Regulation and structure of isozymes of sugar phosphate metabolism in plants isozymes. In: Current Topics in Biological and Medical Research, vol. 16: Agriculture, Physiology, and Medicine, pp. 223–240. A.R. Liss, New York (1987).

    Google Scholar 

  47. Smith AJ: Modes of cyanobacterial carbon metabolism. In: Carr NG, Whitton BA (eds) The Biology of Cyanobacteria, pp. 47–85. Blackwell Scientific Publications, Oxford (1982).

    Google Scholar 

  48. Stitt M: The flux of carbon between the chloroplast and the cytosol. In: Dennis DT, Turpin DH (eds) Plant Physiology, Biochemistry and Molecular Biology, pp. 319–338. Longman, Singapore (1990).

    Google Scholar 

  49. Tingey S, Tsai F, Edwards J, Walker E, Coruzzi G: Chloroplast and cytosolic glutamine synthetase are encoded by homologous nuclear genes which are differentially expressed in vivo. J Biol Chem 263: 9651–9657 (1988).

    Google Scholar 

  50. Tsutsumi K, Kagaya Y, Hidaka S, Suzuki J, Tokairin J, Harai T, Hu D, Ishikawa K, Ejiri S: Structural analysis of the genes encoding chloroplastic and cytoplasmic aldolases in rice. Gene, in press.

  51. Vermeglio A, Ravenel J, Peltier G: Chlororespiration: a respiratory activity in the thylakiod membrane of microalgae and higher plants. In: Weissner W, Robinson DG, Starr RC (eds) Experimental Phycology. 1. Cell Walls and Surfaces, Reproduction, Photosynthesis, pp. 188–205. Springer-Verlag, Berlin (1990).

    Google Scholar 

  52. von Heijne G, Stepphuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).

    PubMed  Google Scholar 

  53. Weeden NF: Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol 17: 133–139 (1981).

    PubMed  Google Scholar 

  54. Yang Y, Kwon H-B, Peng H-P, Shih M-C: Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101: 209–216 (1993).

    Article  PubMed  Google Scholar 

  55. Clausmeyer S, Klösgen R-B, Herrmann RG: Protein import into chloroplasts: The hydrophilic lumenal proteins exhibit unexpected import and sorting specificities in spite of structurally conserved transit peptides. J Biol Chem 268: 13869–13876 (1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Gauen, G., Schnarrenberger, C., Cerff, R. et al. Molecular characterization of a novel, nuclear-encoded, NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L.. Plant Mol Biol 26, 1155–1166 (1994). https://doi.org/10.1007/BF00040696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040696

Key words

Navigation