GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,664)
Document type
  • Articles  (2,664)
Source
Publisher
Years
Topic
  • 1
    Publication Date: 2018-04-16
    Description: Publication date: 1 September 2018 Source: Icarus, Volume 311 Author(s): Eri Tatsumi, Deborah Domingue, Naru Hirata, Kohei Kitazato, Faith Vilas, Susan Lederer, Paul R. Weissman, Stephen C. Lowry, Seiji Sugita We present photometry of the S-type near-Earth asteroid 25143 Itokawa based on both ground-based observations in the UBVRI bands and measurements from the AMICA/Hayabusa spacecraft observations with ul-, b-, v-, w-, x-, and p-filters. Hayabusa observed Itokawa around opposition during the rendezvous, thus providing a unique set of observations of this asteroid. We fit the phase curve measurements with both the Classic Hapke Model (Hapke, 1981, 1984, 1986) and Modern Hapke Model (Hapke, 2002, 2008, 2012a) and thereby extract the physical properties of Itokawa's surface regolith. The single-scattering albedo (0.57 ± 0.05) is larger than that derived for Eros (0.43 ± 0.02), another S-type near-Earth asteroid visited by a spacecraft. Both models indicate a regolith that is forward-scattering in nature. From the hockey stick relationship derived for the single-particle phase function (Hapke, 2012b), both modeling results suggest a regolith comprised of rough surfaced particles with a low density of internal scatterers. Application of the Modern Hapke model derives porosity parameter values from 1 to 1.1, for BVR bands, which corresponds to porosity values between 77–79%. This suggests the surface of Itokawa is very fluffy and the large boulders may be bonded with smaller size particles, typical of the particle sizes observed in Muses Sea. Both models also provide similar geometric albedo values (0.27 ± 0.02) at the V-band wavelength, which are equivalent to Eros’ geometric albedo.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): J. Hanuš, M. Delbo’, J. Ďurech, V. Alí-Lagoa By means of a varied-shape thermophysical model of Hanuš et al. (2015) that takes into account asteroid shape and pole uncertainties, we analyze the thermal infrared data acquired by the NASA’s Wide-field Infrared Survey Explorer of about 300 asteroids with derived convex shape models. We utilize publicly available convex shape models and rotation states as input for the thermophysical modeling. For more than one hundred asteroids, the thermophysical modeling gives us an acceptable fit to the thermal infrared data allowing us to report their thermophysical properties such as size, thermal inertia, surface roughness or visible geometric albedo. This work more than doubles the number of asteroids with determined thermophysical properties, especially the thermal inertia. In the remaining cases, the shape model and pole orientation uncertainties, specific rotation or thermophysical properties, poor thermal infrared data or their coverage prevent the determination of reliable thermophysical properties. Finally, we present the main results of the statistical study of derived thermophysical parameters within the whole population of main-belt asteroids and within few asteroid families. Our sizes based on TPM are, in average, consistent with the radiometric sizes reported by Mainzer et al. (2016). The thermal inertia increases with decreasing size, but a large range of thermal inertia values is observed within the similar size ranges between D  ∼ 10–100 km. We derived unexpectedly low thermal inertias ( 〈 20 J m − 2  s − 1 / 2  K − 1 ) for several asteroids with sizes 10 〈  D  〈 50 km, indicating a very fine and mature regolith on these small bodies. The thermal inertia values seem to be consistent within several collisional families, however, the statistical sample is in all cases rather small. The fast rotators with rotation period P  ≲ 4 h tend to have slightly larger thermal inertia values, so probably do not have a fine regolith on the surface. This could be explained, for example, by the loss of the fine regolith due to the centrifugal force, or by the ineffectiveness of the regolith production(e.g., by the thermal cracking mechanism of Delbo’ et al. 2014).
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Jeffrey N. Cuzzi, Richard G. French, Amanda R. Hendrix, Daniel M. Olson, Ted Roush, Sanaz Vahidinia We have observed the main rings of Saturn with the Space Telescope Imaging Spectrometer (STIS) on the Hubble Space Telescope (HST), covering the spectral region from 180–570 nm  (including for the first time the critical near-UV range 190–340 nm) with very good signal to noise ratio and a radial resolution of approximately 160–330 km. After correcting for an unexpected grating scatter problem associated with the bright, red, extended planet-ring target, we obtained complete I / F spectra for each major ring region. We have interpreted the spectra in terms of the ring particle material composition using a combination of traditional “Hapke” theory and a new correction for shadowing on the rough, re-entrant ring particle surfaces, along with a correction for the nonclassical scattering of the ring layer itself. We tested a variety of UV absorbers: iron (including nano-iron) grains, hematite, “planetary silicates”, organic carbon-ring tholins of varying aromaticity, and amorphous carbon. The A and B rings can contain no more NH 3 than about 10 − 4 by volume. We conclude that the best spectral fit for the well-known, unusually red color of the A and B rings is provided by a sub-percent mass fraction of organic tholins. It appears that the most likely regolith configuration for the A and B Rings is a heterogeneous “intimate mixture”, dominated by relatively pure water ice, with some 2–40% of the grains containing roughly 5–10% tholin by volume (the amount depending on whether silicates are present), but it is hard to allow much amorphous carbon to be present in the B Ring material at least. These predictions of compositional heterogeneity can be tested by Cassini direct compositional measurements. There is some suggestion that the tholin properties differ slightly between the A and B rings. We show that tholins of this type, in the abundance we predict, would be difficult to detect at near-IR wavelengths. The C Ring particles have lower albedos, and the best fit models require a significantly higher abundance of silicates and (more importantly) “neutral” absorber which we model as amorphous carbon, plausibly representing meteoritic infall. Because of our new treatment of shadowing, our estimates of the abundance of amorphous carbon in the C Ring particles are lower (1–5% in the particle regoliths) than previously obtained. The relative abundance of silicate and carbonaceous materials in the C Ring remains uncertain due to uncertainties in how to model the C ring particle phase function.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2018-04-15
    Description: Publication date: June 2018 Source: Icarus, Volume 307
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Joana R.C. Voigt, Christopher W. Hamilton The Elysium Volcanic Province consists of numerous overlapping flow units and may include the youngest lava flows on Mars. However, it is possible that these volcanic units have been modified or overprinted by aqueous processes. Understanding the timing of the igneous and aqueous events in this region is therefore essential for constraining the geological and environmental history of Mars during the Amazonian Period. We investigate the geologic evolution of Eastern Elysium Planitia to determine the relationship between major units, with the support of a geological map and chronological constraints from crater size–frequency distributions. We also evaluate the hypothesized origin of these units via volcanic, fluvial, and/or fluvioglacial processes using a detailed facies-mapping approach. The study area includes the Eastern Cerberus Fossae, Rahway Valles, and Marte Vallis. The surficial deposits in Rahway Valles were formerly interpreted to be modified by fluvial and fluvioglacial processes. However, our facies map reveals that the surface of Eastern Elysium Planitia includes nineteen morphologically distinct regions (i.e., facies), which are interpreted to be the products of flood lava volcanism, including: ʻaʻā, pāhoehoe, and transitional lava flow types. In contrast to previous studies, which determined that Rahway Valles and Marte Vallis consist of two distinct geologic units with Middle to Late Amazonian ages, the results of this work show that the region was resurfaced by at least two volcanic flows with much younger ages of 20.0 Ma and 8.8 Ma. Furthermore, by coupling results of our geologic and facies mapping with chronological constraints as well as subsurface information provided by Shallow Radar reflectors, we show that there is an erosional unconformity located between the two youngest lava flow units in Marte Vallis. We interpret that this unconformity was generated by a catastrophic aqueous flooding event that occurred only 8.8 − 20.0 Ma ago. This implies alternating episodes of volcanism and aqueous flooding that have continued into the geologically recent past on Mars, and may again occur within Elysium Planitia.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Zhen Zhong, Jianguo Yan, J. Alexis P. Rodriguez, James M. Dohm The Grimaldi impact basin is located near the western limb of the moon and lies to the southwest of the Oceanus Procellarum. A clearly visible positive gravity anomaly exists in its low-lying inner wall, implying a subsurface mass concentration beneath the crater. Exploration of this basin could extend our meaningful and fundamental understanding of giant impact processes as well as the structure of mare basins/craters. Limited by the low-resolution of previous gravity field models, it was once impossible to explore the structure beneath Grimaldi. The recent high-resolution gravity data from the Gravity Recovery and Interior Laboratory mission make it possible to break through this barrier. Prior to our investigation of the selenophysical structure around crater Grimaldi, we developed a flexure model that includes surface and subsurface loads. A localized admittance analysis was performed by combining high-resolution gravity data with the high-resolution topography data obtained from Lunar Orbiter Laser Altimeter. Within 2σ STD error constraints, we estimated the best-fit parameters over Grimaldi as well as two other places in its neighborhood. All the predicted admittances show a goodness of fit with their corresponding observations. The large load ratio (∼9.2) found at the Grimaldi is an indirect mirror of the dominant subsurface load, consistent with its large positive gravity anomaly in its low-lying floor. Not only the crustal thickness of 48 km but also the crustal density of 2500 kg m −3 found around Grimaldi shows a great accordance with the recent results of GRAIL. Given the best-fit parameters of f, b c and ρ c , the elastic thickness T e is found to be around 28 km over Grimaldi. Taking into account the best-fit values in its neighborhood, a regional elastic thickness of 30 km could be roughly concluded around Grimaldi, which is completely in the previous ranges (20 〈  T e   〈 60 km) from Clementine. Our result of the elastic thickness is quite larger than those on the lunar nearside volcanic complexes of the recent GRAIL study. Considering fewer thermal activities occurred on the lunar limb or farside than its nearside, we can then deduce that the lithosphere could be possibly cold and therefore developed a corresponding dense elastic thickness.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-15
    Description: Publication date: June 2018 Source: Icarus, Volume 307 Author(s): D.P. Hinson, I.R. Linscott, D.F. Strobel, G.L. Tyler, M.K. Bird, M. Pätzold, M.E. Summers, S.A. Stern, K. Ennico, G.R. Gladstone, C.B. Olkin, H.A. Weaver, W.W. Woods, L.A. Young On 14 July 2015 New Horizons performed a radio occultation (RO) that sounded Pluto’s neutral atmosphere and ionosphere. The solar zenith angle was 90.2° (sunset) at entry and 89.8° (sunrise) at exit. We examined the data for evidence of an ionosphere, using the same method of analysis as in a previous investigation of the neutral atmosphere (Hinson et al., 2017). No ionosphere was detected. The measurements are more accurate at occultation exit, where the 1-sigma sensitivity in integrated electron content (IEC) is 2.3 × 10 11 cm − 2 . The corresponding upper bound on the peak electron density at the terminator is about 1000 cm − 3 . We constructed a model for the ionosphere and used it to guide the analysis and interpretation of the RO data. Owing to the large abundance of CH 4 at ionospheric heights, the dominant ions are molecular and the electron densities are relatively small. The model predicts a peak IEC of 1.8 × 10 11 cm − 2 for an occultation at the terminator, slightly smaller than the threshold of detection by New Horizons.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-15
    Description: Publication date: June 2018 Source: Icarus, Volume 307 Author(s): Ralph D. Lorenz Measurements of discharge currents on the Venera 13 and 14 landers during their descent in the lowest 35 km of the Venus atmosphere are interpreted as driven either by an ambient electric field, or by deposition of charge from aerosols. The latter hypothesis is favored (`triboelectric charging' in aeronautical parlance), and would entail an aerosol opacity and charge density somewhat higher than that observed in Saharan dust transported over long distances on Earth.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-15
    Description: Publication date: June 2018 Source: Icarus, Volume 307 Author(s): V. Hue, F. Hersant, T. Cavalié, M. Dobrijevic, J.A. Sinclair In this work, we aim at constraining the diffusive and advective transport processes in Jupiter’s stratosphere, using Cassini/CIRS observations published by Nixon et al. (2007,2010). The Cassini–Huygens flyby of Jupiter on December 2000 provided the highest spatially resolved IR observations of Jupiter so far, with the CIRS instrument. The IR spectrum contains the fingerprints of several atmospheric constituents and allows probing the tropospheric and stratospheric composition. In particular, the abundances of C 2 H 2 and C 2 H 6 , the main compounds produced by methane photochemistry, can be retrieved as a function of latitude in the pressure range at which CIRS is sensitive to. CIRS observations suggest a very different meridional distribution for these two species. This is difficult to reconcile with their photochemical histories, which are thought to be tightly coupled to the methane photolysis. While the overall abundance of C 2 H 2 decreases with latitude, C 2 H 6 becomes more abundant at high latitudes. In this work, a new 2D (latitude-altitude) seasonal photochemical model of Jupiter is developed. The model is used to investigate whether the addition of stratospheric transport processes, such as meridional diffusion and advection, are able to explain the latitudinal behavior of C 2 H 2 and C 2 H 6 . We find that the C 2 H 2 observations are fairly well reproduced without meridional diffusion. Adding meridional diffusion to the model provides an improved agreement with the C 2 H 6 observations by flattening its meridional distribution, at the cost of a degradation of the fit to the C 2 H 2 distribution. However, meridional diffusion alone cannot produce the observed increase with latitude of the C 2 H 6 abundance. When adding 2D advective transport between roughly 30 mbar and 0.01 mbar, with upwelling winds at the equator and downwelling winds at high latitudes, we can, for the first time, reproduce the C 2 H 6 abundance increase with latitude. In parallel, the fit to the C 2 H 2 distribution is degraded. The strength of the advective winds needed to reproduce the C 2 H 6 abundances is particularly sensitive to the value of the meridional eddy diffusion coefficient. The coupled fate of these methane photolysis by-products suggests that an additional process is missing in the model. Ion-neutral chemistry was not accounted for in this work and might be a good candidate to solve this issue.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-15
    Description: Publication date: 1 September 2018 Source: Icarus, Volume 311 Author(s): Christopher Lee, Mark I. Richardson, Claire E. Newman, Michael A. Mischna Mars exhibits less atmospheric variability at the solstices than it does during periods nearer the equinoxes. Much of this variability in air temperature and dust activity is attributable to a significant decrease in eastward traveling transient wave amplitudes in the lower atmosphere near the solstice. Previous versions of the Mars Weather Research and Forecasting (MarsWRF) model using only dust radiative forcing have reproduced the nature but not the magnitude of this ‘solsticial pause’ in atmospheric variability. In this paper, we use a version of MarsWRF that includes a fully-interactive dust and water cycle to simulate winter solsticial pauses under a range of dust and water ice conditions. The upgraded model specifically includes a new hybrid binned/two-moment microphysics model that simulates dust, water ice, and cloud condensation nuclei. The scheme tracks mass and number density for the three particle types throughout the atmosphere and allows advection by resolved winds, mixing by unresolved processes, and sedimentation that depends on particle size and density. Ice and dust particles interact with radiation in the atmosphere using a Mie scattering parameterization that allows for variable particle size and composition. Heterogeneous nucleation and condensation use an adaptive bin size scheme to accurately track the particle size during condensation and sublimation processes. All microphysical processes in the model are calculated within the dynamical timesteps using stability-guaranteed implicit calculations with no sub-timestepping. The impact of the addition of water processes to the model was assessed by comparing simulations with only interactive dust (dry simulations) and ones with a fully-interactive dust and water cycle (wet simulations). In dry simulations with dust storms a solsticial pause occurs in the northern winter with a magnitude (or ‘depth’) that depends on the opacity of the southern summer dust storms. In wet simulations that include water ice and dust particles, deep solsticial pauses are found in both winter hemispheres. In all simulations that reproduce the solsticial pause, energy and instability analysis suggest that a decrease in baroclinic instability and increase in barotropic energy conversion occurs during the solsticial pause. In dry simulations the decrease in baroclinic instability is caused by increased dust opacity leading to increased thermal static stability. In wet simulations, additional opacity from local cap-edge ice clouds reduces the near surface wind shear and further inhibits baroclinic eddy growth. The wet simulations are in better agreement with observations and tend to support results from other models that include ice cloud radiative effects.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...