GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (489)
Document type
  • Articles  (489)
Source
Publisher
Years
Journal
  • 1
    Publication Date: 2018-03-14
    Description: An efficient in vitro multiplication protocol was designed to Thymus leucotrichus , a subshrub and perennial herb growing naturally in the Northwest of Turkey. Of all basal media studied, Murashige and Skoog medium was found to be superior to the others, providing higher shoot formation and the maximum shoot length. Varying concentrations of cytokinins, i.e., 6-benzyladenine, thidiazuron, 2-isopentenyladenine and kinetin were supplemented in the nutrient media to observe their effects on shoot development and biomass. Rosmarinic acid content and volatile compositions of both naturally growing plants and in vitro multiplied plantlets were also evaluated. 6-benzyladenine (1.0 mg/L) and kinetin (0.5 mg/L) were found to be optimum for shoot number and shoot elongation, respectively. Thidiazuron (1.0 mg/L) was superior for biomass production. Rosmarinic acid content of in vitro multiplied plants was found to be higher than that of wild plants, reaching a maximum with 0.5 mg/L 2-isopentenyladenine, which yielded 10.15 mg/g dry weight. The highest thymol content was obtained with 1.0 mg/L kinetin (55.82%), while thidiazuron (0.1 mg/L) increased carvacrol production (12.53%). Overall, Murashige and Skoog medium supplemented with 1.0 mg/L kinetin was determined to be the most favorable medium studied.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-14
    Description: The production of Hasma generates plentiful non-edible by-products in China and Central Asia. As one of main by-products, the skin of Rana chensinensis is discarded as waste without utilization. In this work, R. chensinensis skin collagen (RCSC) hydrolysates were extracted using pepsin under acidic conditions. The yield of RCSC is 15.1% (w/w). Amino acid analysis revealed that RCSC contained glycine (204.5/1000 residues) and imino acids (182/1000 residues). RCSC exhibited high solubility in acidic pH (1–4) and low NaCl concentrations (〈 2%, w/v). Differential scanning calorimetry indicated that the denaturation temperature of RCSC was 33.5 °C. Scanning electron microscopy analysis confirmed their well-defined fibril morphologies. The results indicated that the skin of R. chensinensis is an alternative source of collagen hydrolysates, and RCSC can serve as a potential source applying in foodstuff and medical industry.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-14
    Description: To achieve a high yield of tropane alkaloids (TA) and exploit the alpine plant sustainably, an optimized protocol for induction and establishment of hairy roots culture of Prezwalskia tangutica Maxim was developed through selection of appropriate Agrobacterium strain and the explant type. The hypocotyl is more readily facile to induce the HR than the cotyledon is when infected with the three different agrobacterium strains. MUS440 has an efficiency (of up to 20%), whereas the ATCC10060 (A4) can induce HR on both types of explants with the highest frequency (33.33%), root length (21.17 ± 2.84 cm), and root number (10.83 ± 1.43) per explant than the other strains. The highest HR production resulted from using hypocotyl as explants. Independent transformed HR was able to grow vigorously and to propagate on a no-hormone 1/2MS liquid medium. The presence of pRi rol B gene in transformation of HR was confirmed by PCR amplification. In the liquid medium, the HR growth curve appeared to be “S” shaped, and ADB had increased to 4.633 g/l. Moreover, HPLC analysis showed that HR lines have an extraordinary ability to produce atropine (229.88 mg/100 g), anisodine (4.09 mg/100 g), anisodamine (12.85 mg/100 g), and scopolamine (10.69 mg/100 g), which were all more significant than the control roots. In conclusion, our study optimized the culture condition and established a feasible genetics reactor for P. tangutica green exploration and biological study in the alpine region.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-12
    Description: In the present study, we purified α-amino acid ester hydrolase (AEH) from cell-free extracts of the Stenotrophomonas maltophilia strain HS1. The approximately 70-kDa AEH from S. maltophilia HS1 (SmAEH) was homogeneous in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analyses, and was present as a tetramer in gel-filtration experiments. The activity of the SmAEH enzyme was then determined by monitoring the synthesis of the antihypertensive agent dipeptide isoleucyl-tryptophan (Ile-Trp) from isoleucyl methyl ester (Ile-OMe) and tryptophan (Trp). In these experiments, SmAEH had wide substrate specificity for acyl donors, such as Gly-OMe, β-Ala-OMe, Pro-OMe and Trp-OMe and Ile-OMe, and maximal activity were observed under conditions of pH 9.0 and 30 °C. SmAEH also showed the greatest stability at pH 9.0, whereas its activity was reduced by 40% after 10-min incubation at approximately 50 °C. In subsequent activity assays in the presence of various metal ions, Ag + strongly inhibited enzyme activity. Finally, SmAEH activity was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), suggesting that the protein is a serine protease.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-12
    Description: The present study describes the biocorrosion of mild steel (MS1010) and pure copper (Cu) in cooling water environments (both field and lab study). Electrochemical and surface analyses of both metals were carried out to confirm the corrosion susceptibility in the presence of bacteria and inhibitor. Surface analysis of the MS and Cu coupons revealed that biofilm was developed with increasing exposure time in the field study. In the lab study, accumulation of extracellular polymeric substance over the metal surface was noticed and led to the severe pitting type of corrosion on both metal surfaces. Besides, the anti-corrosive study was carried out using the combinations of commercial corrosion inhibitor (S7653—10 ppm) with biocide (F5100—5 ppm), and the results reveal that the corrosion rate of MS and Cu was highly reduced to 0.0281 and 0.0021 mm/year (inhibitor system) than 0.1589 and 0.0177 mm/year (control system). Inhibition efficiency for both metals in the presence of inhibitor with biocide was found as 82 and 88% for MS and Cu, respectively. The present study concluded that MS was very susceptible to biocorrosion, compared to copper metal in cooling water environment. Further, the combination of the both inhibitor and biocide was effectively inhibiting the biocorrosion which was due to its antibacterial and anti-corrosive properties.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-12
    Description: This study highlights the anti-oxidant and anti-cancer activities of bio-functionalized Thymus vulgaris silver nanoparticles (TVAgNPs) and bioactive compounds were compared using the human breast cancer T47D cell line. The aqueous ethanolic extract of T. vulgaris evaluated for chemical composition using the gas chromatography–mass spectrometer (GC–MS) analysis. The prepared TVAgNPs were determined by means of UV–Vis spectroscopy, FTIR spectroscopy, zeta potential, scanning electron microscopy, transmission electron microscopy, and energy-dispersed spectroscopy analysis. The T. vulgaris extract and TVAgNPs were studied for their in vitro anti-oxidant property by 2, 2-diphenyl, 1-picryl hydrazyl (DPPH) assay. Microscopic observations indicated spherical shaped and monodispersed nanoparticles and the average size of the nanoparticles was about 30 nm. Regarding the elemental composition profile of the TVAgNPs, the highest signal of silver (89.30%) was detected followed by other elements. An absorption peak was registered at 440 nm according to surface plasmon resonance (SPR) of the TVAgNPs in solution. A zeta potential of fabricated nanoparticles was approximately − 12.6 mV, indicating higher stability of the bio-functionalized TVAgNPs. The T. vulgaris extract and synthesized TVAgNPs were evaluated for their anti-cancer activity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and Annexin V double staining with propidium iodide (PI) flow cytometric analysis toward T47D cells. The cytotoxicity properties of the bio-functionalized T. vulgaris AgNPs revealed that the sensitivity of T47D human breast cancer cells is high compared with T. vulgaris extract. The Annexin V/PI staining indicated that the fabricated TVAgNPs shows increased apoptosis in T47D cells as compared to untreated cells. Besides, the anti-oxidant activity of the TVAgNPs clarified a higher anti-radical-scavenging activity compared to Thymus vulgaris extract. Our data show that the potential biological activities of the bioactive constituents of T. vulgaris can be enhanced through bio-functionalized T. vulgaris AgNPs due to the bioorganic compounds that exist in the extract.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-12
    Description: Three different concentrations of a purified maltogenic amylase (FSA) from fenugreek ( Trigonella foenum graecum ) seeds were incorporated into the cake formulation. The addition of FSA at 0.003, 0.005 and 0.01 U/g of cake increased the loaf volume, the number of holes (gas cells), and water absorption. Textural study revealed an improvement of the cake quality, resulting in the decrease of hardness and the increase of cohesion. Environmental scanning electron microscopy was performed on different cakes to evaluate the influence of amylase activity on microstructure. The microstructure observation showed that the FSA had a beneficial effect on starch and crumb properties. The sensory evaluation supported this result and confirmed the beneficial effect of adding FSA on cake odor and crust color. In addition, relationships between physical parameters, instrumentally textural parameters, and sensory characteristics of cake treated with FSA might be used for constructing linear regression analysis models to predict overall acceptability. In fact, overall acceptability of treated cake with FSA at 0.01 U appeared to be the most remarkable one and could be a promising technology to improve the quality of cake.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-12
    Description: NAD + -dependent formate dehydrogenases (FDH, EC 1.2.1.2), providing energy to the cell in methylotrophic microorganisms, are stress proteins in higher plants and the level of FDH expression increases under several abiotic and biotic stress conditions. They are biotechnologically important enzymes in NAD(P)H regeneration as well as CO 2 reduction. Here, the truncated form of the Gossypium hirsutum fdh1 cDNA was cloned into pQE-2 vector, and overexpressed in Escherichia coli DH5α-T1 cells. Recombinant GhFDH1 was purified 26.3-fold with a yield of 87.3%. Optimum activity was observed at pH 7.0, when substrate is formate. Kinetic analyses suggest that GhFDH1 has considerably high affinity to formate (0.76 ± 0.07 mM) and NAD + (0.06 ± 0.01 mM). At the same time, the affinity (1.98 ± 0.4 mM) and catalytic efficiency (0.0041) values of the enzyme for NADP + show that GhFDH1 is a valuable enzyme for protein engineering studies that is trying to change the coenzyme preference from NAD to NADP which has a much higher cost than that of NAD. Improving the NADP specificity is important for NADPH regeneration which is an important coenzyme used in many biotechnological production processes. The T m value of GhFDH1 is 53.3 °C and the highest enzyme activity is measured at 30 °C with a half-life of 61 h. Whilst further improvements are still required, the obtained results show that GhFDH1 is a promising enzyme for NAD(P)H regeneration for its prominent thermostability and NADP + specificity.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-12
    Description: The current study aimed at exploring the diversity of bacterial lactase genes in the intestinal mucosa of mice with dysbacterial diarrhea induced by antibiotics and to provide experimental basis for antibiotics-induced diarrhea. Mice model of dysbacterial diarrhea was established by gastric perfusion with mixture of cephradine capsules and gentamicin sulfate (23.33 mL kg −1  d −1 ), twice a day and continuously for 5 days. Intestinal mucosa from jejunum to ileum was collected, and bacterial metagenomic DNA was extracted for Miseq metagenome sequencing to carry out diversity analysis. The results showed that specific operational taxonomic units (OTUs) were 45 in the control group and 159 in the model group. The Chao1, ACE, Shannon and Simpson indices in model group were significantly higher ( P  〈 0.01 or P  〈 0.05) than control group. Principal component analysis (PCA) and box chart of the control group were relatively intensive, while in the model group, they were widely dispersed. Furthermore, the inter-group box area was higher than that in the intra-group. Compared with the model group, the abundance of bacterial lactase genes in Proteobacteria from the intestinal mucosa of the control group was higher, but lower in Actinobacteria and unclassified bacteria. At the genus level, the relative abundance of bacterial species and taxon units in model group was obviously increased ( P  〈 0.05). Our results indicate that antibiotics increased the diversity and abundance of bacterial lactase genes in the intestinal mucosa, as the abundance of Betaproteobacteria , Cupriavidus , Ewingella , Methyloversatilis , Rhodocyclaceae and Rhodocyclales . In addition, antibiotics become an additional source for lactase genes of Ewingella , Methyloversatilis , Mycobacterium , Microbacterium , Beutenberqia and Actinomyces .
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-12
    Description: Plants have evolved various defense mechanisms including morphological adaptations, cellular pathways, specific signalling molecules and inherent immunity to endure various abiotic stresses during different growth stages. Most of the defense mechanisms are controlled by stress-responsive genes by transcribing and translating specific genes. However, certain modifications of DNA and chromatin along with small RNA-based mechanisms have also been reported to regulate the expression of stress-responsive genes and constitute another line of defense for plants in their struggle against stresses. More recently, studies have suggested that these modifications are heritable to the future generations as well, thereby indicating their possible role in the evolutionary mechanisms related to abiotic stresses.
    Print ISSN: 2190-572X
    Electronic ISSN: 2190-5738
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...