GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,719)
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-13
    Description: Presents the table of contents for this issue of the periodical.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-13
    Description: Very high resolution optical remote sensing images (RSI) are often corrupted by noise. Among popular denoising methods in the state of the art, nonlocal Bayes (NLB) has led to successful results on real datasets, with high quality and reasonable computation time. However, its computation time remains prohibitive with respect to requirements of operational RSI pipelines, such as Pléiades one. In this paper, we tackle such an issue and introduce several optimizations aiming to significantly reduce the computation time required by NLB while keeping the best denoising quality (i.e., preserving edges, textures, and homogeneous areas). More precisely, our improvements consist of reducing multiple estimations of a same pixel with a masking technique and modifying the spatial extent of the similar patch search area (i.e., one of the main parts of nonlocal algorithms, such as NLB). We report several experiments and discuss optimal settings for these parameters, allowing a gain in computation time of 50% (resp. 15%) with optimized masking strategy (resp. spatial extent of the search area). When both contributions are combined, we achieve the same denoising quality as standard NLB while doubling the computation efficiency, the latter being increased fivefold if we accept a very small (lower than 0.1%) loss in quality.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-13
    Description: Compared with color or grayscale images, hyperspectral images deliver more informative representation of ground objects and enhance the performance of many recognition and classification applications. However, hyperspectral images are normally corrupted by various types of noises, which have a serious impact on the subsequent image processing tasks. In this paper, we propose a novel hyperspectral image denoising method based on tucker decomposition to model the nonlocal similarity across the spatial domain and global similarity along the spectral domain. In this method, 3-D full band patches extracted from a hyperspectral image are grouped to form a third-order tensor by utilizing the nonlocal similarity in a proper window size. In this way, the task of image denoising is transformed into a high-order tensor approximation problem, which can be solved by nonnegative tucker decomposition. Instead of a traditional alternative least square based tucker decomposition, we propose a hierarchical least square based nonnegative tucker decomposition method to reduce the computational cost and improve the denoising effect. In addition, an iterative denoising strategy is adopted to achieve better denoising outcome in practice. Experimental results on three datasets show that the proposed method outperforms several state-of-the-art methods and significantly enhances the quality of the corrupted hyperspectral image.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-13
    Description: Synthetic aperture radar (SAR) images display very high dynamic ranges. Man-made structures (like buildings or power towers) produce echoes that are several orders of magnitude stronger than echoes from diffusing areas (vegetated areas) or from smooth surfaces (e.g., roads). The impulse response of the SAR imaging system is, thus, clearly visible around the strongest targets: sidelobes spread over several pixels, masking the much weaker echoes from the background. To reduce the sidelobes of the impulse response, images are generally spectrally apodized, trading resolution for a reduction of the sidelobes. This apodization procedure (global or shift-variant) introduces spatial correlations in the speckle-dominated areas that complicates the design of estimation methods. This paper describes strategies to cancel sidelobes around point-like targets while preserving the spatial resolution and the statistics of speckle-dominated areas. An irregular sampling grid is built to compensate the subpixel shifts and turn cardinal sines into discrete Diracs. A statistically grounded approach for point-like target extraction is also introduced, thereby providing a decomposition of a single look complex image into two components: a speckle-dominated image and the point-like targets. This decomposition can be exploited to produce images with improved quality (full resolution and suppressed sidelobes) suitable both for visual inspection and further processing (multitemporal analysis, despeckling, interferometry).
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-13
    Description: The normalized difference vegetation index (NDVI) has been widely used in recent decades to monitor vegetation phenology. However, interference from snow cover introduces a high degree of uncertainty in interpreting NDVI fluctuation, because snow melting increases NDVI value in a manner similar to vegetation growth, leading to false detection. In this study, we present a novel methodology to smooth out data noise caused by snow in the third generation NDVI dataset from Global Inventory Modeling and Mapping Studies (GIMMS NDVI3g). This method is developed to replace small values with a pixel-specific snow-free background NDVI estimate, based on the assumption that the existence of snow decrease NDVI value and the patterns of NDVI fluctuation after snow melting and that after initiation of vegetation growth are different. Using the daily gross primary production (GPP) data of 111 site-years from FLUXNET in nine North American sites and the GIMMS NDVI3g dataset, we found that the green-up onset day (GUD) derived from raw NDVI is 42.2 days earlier than that of GPP, on average. This difference decreases to 4.7 days when applying the newly developed method. Additionally, the root mean square error and Spearman's correlation coefficient between NDVI-derived GUD and GPP-derived GUD are improved from 46.8 to 12.8 days and 0.22 to 0.64, respectively. Our results indicate that this method could effectively improve the ability to monitor the vegetation phenology by NDVI time series in areas with seasonal snow cover.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-13
    Description: Accurately monitoring forest dynamics in the tropical regions is essential for ecological studies and forest management. In this study, images from phase-array L-band synthetic aperture radar (PALSAR), PALSAR-2, and Landsat in 2006–2010 and 2015 were combined to identify tropical forest dynamics on Hainan Island, China. Annual forest maps were first mapped from PALSAR and PALSAR-2 images using structural metrics. Those pixels with a high biomass of sugarcane or banana, which are widely distributed in the tropics and subtropics and have similar structural metrics as forests, were excluded from the SAR-based forest maps by using phenological metrics from time series Landsat imagery. The optical–SAR-based forest maps in 2010 and 2015 had high overall accuracies (OA) of 92–97% when validated with ground reference data. The resultant forest map in 2010 shows good spatial agreement with public optical-based forest maps (OA = 88–90%), and the annual forest maps (2007–2010) were spatiotemporally consistent and more accurate than the PALSAR-based forest map from the Japan Aerospace Exploration Agency (OA = 82% in 2010). The areas of forest gain, loss, and net change on Hainan Island from 2007 to 2015 were 415 000 ha (+2.17% yr –1 ), 179 000 ha (–0.94% yr –1 ), and 236 000 ha (+1.23% yr –1 ), respectively. About 95% of forest gain and loss occurred in those areas with an elevation less than 400 m, where deciduous rubber, eucalyptus plantations, and urbanization expanded rapidly. This study demonstrates the potential of- PALSAR/PALSAR-2/Landsat image fusion for monitoring annual forest dynamics in the tropical regions.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-13
    Description: A novel method that combines joint clusters and iterative graph cuts for ALS point cloud filtering is proposed in this paper. The method first extracts clusters of points from the raw point cloud, and then classifies ground points at the cluster level. There are four main steps, i.e., two-step point cloud clustering, critical point extraction, initial terrain determination, and terrain densification based on iterative graph cuts. Smooth clusters, rough clusters, and scattered points are extracted by the two-step clustering to depict the raw point cloud, which reduces the complexity of raw data and the judgment difficulty in the subsequent procedures. Critical points of each cluster are extracted, and the initial terrain is determined among the smooth clusters. Using the initial terrain and critical points, iterative graph cuts is performed to segment ground and nonground points at the cluster level. Experiments on ISPRS dataset with a low point density and Utah dataset with a moderate point density show that our approach provides a satisfactory trade off between Type I and Type II errors. Moreover, our method significantly outperforms progressive TIN densification based filters, and successfully controls Type II errors.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-13
    Description: Provides a listing of current staff, committee members and society officers.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-13
    Description: Presents the front cover for this issue of the publication.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-13
    Description: Hyperspectral images (HSIs) are usually contaminated by various kinds of noise, such as stripes, deadlines, impulse noise, Gaussian noise, and so on, which significantly limits their subsequent application. In this paper, we model the stripes, deadlines, and impulse noise as sparse noise, and propose a unified mixed Gaussian noise and sparse noise removal framework named spatial–spectral total variation regularized local low-rank matrix recovery (LLRSSTV). The HSI is first divided into local overlapping patches, and rank-constrained low-rank matrix recovery is adopted to effectively separate the low-rank clean HSI patches from the sparse noise. Differing from the previous low-rank-based HSI denoising approaches, which process all the patches individually, a global spatial–spectral total variation regularized image reconstruction strategy is utilized to ensure the global spatial–spectral smoothness of the reconstructed image from the low-rank patches. In return, the globally reconstructed HSI further promotes the separation of the local low-rank components from the sparse noise. An augmented Lagrange multiplier method is adopted to solve the proposed LLRSSTV model, which simultaneously explores both the local low-rank property and the global spatial–spectral smoothness of the HSI. Both simulated and real HSI experiments were conducted to illustrate the advantage of the proposed method in HSI denoising, from visual/quantitative evaluations and time cost.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...