GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,862)
Document type
  • Articles  (1,862)
Source
Years
Topic
  • 1
    Publication Date: 2018-12-11
    Description: We illustrate, through two case studies, that "mean-variance QTL mapping"—QTL mapping that models effects on the mean and the variance simultaneously—can discover QTL that traditional interval mapping cannot. Mean-variance QTL mapping is based on the double generalized linear model, which extends the standard linear model used in interval mapping by incorporating not only a set of genetic and covariate effects for mean but also set of such effects for the residual variance. Its potential for use in QTL mapping has been described previously, but it remains underutilized, with certain key advantages undemonstrated until now. In the first case study, a reduced complexity intercross of C57BL/6J and C57BL/6N mice examining circadian behavior, our reanalysis detected a mean-controlling QTL for circadian wheel running activity that interval mapping did not; mean-variance QTL mapping was more powerful than interval mapping at the QTL because it accounted for the fact that mice homozygous for the C57BL/6N allele had less residual variance than other mice. In the second case study, an intercross between C57BL/6J and C58/J mice examining anxiety-like behaviors, our reanalysis detected a variance-controlling QTL for rearing behavior; interval mapping did not identify this QTL because it does not target variance QTL. We believe that the results of these reanalyses, which in other respects largely replicated the original findings, support the use of mean-variance QTL mapping as standard practice.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-11
    Description: Regulation of plant root angle is critical for obtaining nutrients and water and is an important trait for plant breeding. A plant’s final, long-term root angle is the net result of a complex series of decisions made by a root tip in response to changes in nutrient availability, impediments, the gravity vector and other stimuli. When a root tip is displaced from the gravity vector, the short-term process of gravitropism results in rapid reorientation of the root toward the vertical. Here, we explore both short- and long-term regulation of root growth angle, using natural variation in tomato to identify shared and separate genetic features of the two responses. Mapping of expression quantitative trait loci mapping and leveraging natural variation between and within species including Arabidopsis suggest a role for PURPLE ACID PHOSPHATASE 27 and CELL DIVISION CYCLE 73 in determining root angle.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-11
    Description: Reproductive barriers involving gametic incompatibilities can act to enhance population divergence and promote the persistence of species boundaries. Observing gametic interactions in internal fertilizing organisms, however, presents a considerable practical challenge to characterizing mechanisms of such gametic isolation. Here we exploit the transparency of Caenorhabditis nematodes to investigate gametic isolation mediated by sperm that can migrate to ectopic locations, with this sperm invasion capable of inducing female sterility and premature death. As a step toward identifying genetic factors and mechanisms associated with female susceptibility to sperm invasion, we characterized a panel of 25 C. elegans genetic mutants to test for effects on the incidence and severity of sperm invasion in both conspecific and inter-species matings. We found genetic perturbations to contribute to distinct patterns of susceptibility that identify ovulation dynamics and sperm guidance cues as modulators of ectopic sperm migration incidence and severity. Genotypes confer distinctive phenotypic sensitivities to the sperm from conspecific C. elegans males vs. heterospecific C. nigoni males, implicating evolution of functional divergence in the history of these species for components of sperm-reproductive tract interactions. Sexually-antagonistic co-evolution within species that drives divergent trait and molecular evolution between species provides a working model to explain mismatched species-specific gametic interactions that promote or mitigate ectopic sperm migration.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-11
    Description: The highly conserved DNA damage response (DDR) pathway monitors the genomic integrity of the cell and protects against genotoxic stresses. The apical kinases, Mec1 and Tel1 (ATR and ATM in human, respectively), initiate the DNA damage signaling cascade through the effector kinases, Rad53 and Chk1, to regulate a variety of cellular processes including cell cycle progression, DNA damage repair, chromatin remodeling, and transcription. The DDR also regulates other cellular pathways, but direct substrates and mechanisms are still lacking. Using a mass spectrometry-based phosphoproteomic screen in Saccharomyces cerevisiae , we identified novel targets of Rad53, many of which are proteins that are involved in RNA metabolism. Of the 33 novel substrates identified, we verified that 12 are directly phosphorylated by Rad53 in vitro : Xrn1, Gcd11, Rps7b, Ded1, Cho2, Pus1, Hst1, Srv2, Set3, Snu23, Alb1, and Scp160. We further characterized Xrn1, a highly conserved 5' exoribonuclease that functions in RNA degradation and the most enriched in our phosphoproteomics screen. Phosphorylation of Xrn1 by Rad53 does not appear to affect Xrn1’s intrinsic nuclease activity in vitro , but may affect its activity or specificity in vivo .
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-11
    Description: Genomic selection - the prediction of breeding values using DNA polymorphisms - is a disruptive method that has widely been adopted by animal and plant breeders to increase productivity. It was recently shown that other sources of molecular variations such as those resulting from transcripts or metabolites could be used to accurately predict complex traits. These endophenotypes have the advantage of capturing the expressed genotypes and consequently the complex regulatory networks that occur in the different layers between the genome and the phenotype. However, obtaining such omics data at very large scales, such as those typically experienced in breeding, remains challenging. As an alternative, we proposed using near-infrared spectroscopy (NIRS) as a high-throughput, low cost and non-destructive tool to indirectly capture endophenotypic variants and compute relationship matrices for predicting complex traits, and coined this new approach "phenomic selection" (PS). We tested PS on two species of economic interest ( Triticum aestivum L. and Populus nigra L.) using NIRS on various tissues (grains, leaves, wood). We showed that one could reach predictions as accurate as with molecular markers, for developmental, tolerance and productivity traits, even in environments radically different from the one in which NIRS were collected. Our work constitutes a proof of concept and provides new perspectives for the breeding community, as PS is theoretically applicable to any organism at low cost and does not require any molecular information.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Genetics Society of America (GSA)
    Publication Date: 2018-12-11
    Description: We present vqtl, an R package for mean-variance QTL mapping. This QTL mapping approach tests for genetic loci that influence the mean of the phenotype, termed mean QTL, the variance of the phenotype, termed variance QTL, or some combination of the two, termed mean-variance QTL. It is unique in its ability to correct for variance heterogeneity arising not only from the QTL itself but also from nuisance factors, such as sex, batch, or housing. This package provides functions to conduct genome scans, run permutations to assess the statistical significance, and make informative plots to communicate results. Because it is inter-operable with the popular qtl package and uses many of the same data structures and input patterns, it will be straightforward for geneticists to analyze future experiments with vqtl as well as re-analyze past experiments, possibly discovering new QTL.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Genetics Society of America (GSA)
    Publication Date: 2018-12-11
    Description: Standard QTL mapping procedures seek to identify genetic loci affecting the phenotypic mean while assuming that all individuals have the same residual variance. But when the residual variance differs systematically between groups, perhaps due to a genetic or environmental factor, such standard procedures can falter: in testing for QTL associations, they attribute too much weight to observations that are noisy and too little to those that are precise, resulting in reduced power and and increased susceptibility to false positives. The negative effects of such "background variance heterogeneity" (BVH) on standard QTL mapping have received little attention until now, although the subject is closely related to work on the detection of variance-controlling genes. Here we use simulation to examine how BVH affects power and false positive rate for detecting QTL affecting the mean (mQTL), the variance (vQTL), or both (mvQTL). We compare linear regression for mQTL and Levene’s test for vQTL, with tests more recently developed, including tests based on the double generalized linear model (DGLM), which can model BVH explicitly. We show that, when used in conjunction with a suitable permutation procedure, the DGLM-based tests accurately control false positive rate and are more powerful than the other tests. We also find that some adverse effects of BVH can be mitigated by applying a rank inverse normal transform. We apply our novel approach, which we term "mean-variance QTL mapping", to publicly available data on a mouse backcross and, after accommodating BVH driven by sire, detect a new mQTL for bodyweight.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-11
    Description: The overproduction of reactive oxygen species (ROS) in cells can lead to the development of diseases associated with aging. We have previously shown that C. elegans BRAP-2 (Brca1 associated binding protein 2) regulates phase II detoxification genes such as gst-4 , by increasing SKN-1 activity. Previously, a transcription factor (TF) RNAi screen was conducted to identify potential activators that are required to induce gst-4 expression in brap-2 ( ok1492 ) mutants. The lipid metabolism regulator NHR-49 /HNF4 was among 18 TFs identified. Here, we show that knockdown of nhr-49 suppresses the activation of gst-4 caused by brap-2 inactivation and that gain-of-function alleles of nhr-49 promote gst-4 expression. We also demonstrate that nhr-49 and its cofactor mdt-15 are required to express phase II detoxification enzymes upon exposure to chemicals that induce oxidative stress. Furthermore, we show that NHR-49 and MDT-15 enhance expression of skn-1a/c . These findings identify a novel role for NHR-49 in ROS detoxification by regulating expression of SKN-1C and phase II detoxification genes.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-12-11
    Description: Multi-trait and multi-environment data are common in animal and plant breeding programs. However, what is lacking are more powerful statistical models that can exploit the correlation between traits to improve prediction accuracy in the context of genomic selection (GS). Multi-trait models are more complex than univariate models and usually require more computational resources, but they are preferred because they can exploit the correlation between traits, which many times helps improve prediction accuracy. For this reason, in this paper we explore the power of multi-trait deep learning (MTDL) models in terms of prediction accuracy. The prediction performance of MTDL models was compared to the performance of the Bayesian multi-trait and multi-environment (BMTME) model proposed by Montesinos-López et al. (2016) , which is a multi-trait version of the genomic best linear unbiased prediction (GBLUP) univariate model. Both models were evaluated with predictors with and without the genotype x environment interaction term. The prediction performance of both models was evaluated in terms of Pearson’s correlation using cross-validation. We found that the best predictions in two of the three data sets were found under the BMTME model, but in general the predictions of both models, BTMTE and MTDL, were similar. Among models without the genotype x environment interaction, the MTDL model was the best, while among models with genotype x environment interaction, the BMTME model was superior. These results indicate that the MTDL model is very competitive for performing predictions in the context of GS, with the important practical advantage that it requires less computational resources than the BMTME model.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-12-11
    Description: Next generation biofuels including longer-chain alcohols such as butanol are attractive as renewable, high-energy fuels. A barrier to microbial production of butanols is the increased toxicity compared to ethanol; however, the cellular targets and microbial defense mechanisms remain poorly understood, especially under anaerobic conditions used frequently in industry. Here we took a comparative approach to understand the response of Saccharomyces cerevisiae to 1-butanol, isobutanol, or ethanol, across three genetic backgrounds of varying tolerance in aerobic and anaerobic conditions. We find that strains have different growth properties and alcohol tolerances with and without oxygen availability, as well as unique and common responses to each of the three alcohols. Our results provide evidence for strain-by-alcohol-by-oxygen interactions that moderate how cells respond to alcohol stress.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...