GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing AG
    Description / Table of Contents: Intro -- Foreword by Florian Schütz -- Foreword by Jan Kleijssen -- Preface -- Acknowledgments -- Contents -- List of Contributors -- Reviewers -- Acronyms -- Part I Introduction -- 1 From Deep Neural Language Models to LLMs -- 1.1 What LLMs Are and What LLMs Are Not -- 1.2 Principles of LLMs -- 1.2.1 Deep Neural Language Models -- 1.2.2 Generative Deep Neural Language Models -- 1.2.3 Generating Text -- 1.2.4 Memorization vs Generalization -- 1.2.5 Effect of the Model and Training Dataset Size -- References -- 2 Adapting LLMs to Downstream Applications -- 2.1 Prompt Optimization -- 2.2 Pre-Prompting and Implicit Prompting -- 2.3 Model Coordination: Actor-Agents -- 2.4 Integration with Tools -- 2.5 Parameter-Efficient Fine-Tuning -- 2.6 Fine-Tuning -- 2.7 Further Pretraining -- 2.8 From-Scratch Re-Training -- 2.9 Domain-Specific Distillation -- References -- 3 Overview of Existing LLM Families -- 3.1 Introduction -- 3.2 Pre-Transformer LLMs -- 3.3 BERT and Friends -- 3.4 GPT Family Proper -- 3.5 Generative Autoregressors (GPT Alternatives) -- 3.6 Compute-Optimal Models -- 3.6.1 LLaMA Family -- 3.7 Full-Transformer/Sequence-to-Sequence Models -- 3.8 Multimodal and Mixture-of-Experts Models -- 3.8.1 Multimodal Visual LLMs -- 3.8.2 Pathways Language Model, PaLM -- 3.8.3 GPT-4 and BingChat -- References -- 4 Conversational Agents -- 4.1 Introduction -- 4.2 GPT Related Conversational Agents -- 4.3 Alternative Conversational Agent LLMs -- 4.3.1 Conversational Agents Without Auxiliary Capabilities -- 4.3.2 Conversational Agents With Auxiliary Capabilities -- 4.3.2.1 Models With Non-Knowledge Auxiliary Capabilities -- 4.4 Conclusion -- References -- 5 Fundamental Limitations of Generative LLMs -- 5.1 Introduction -- 5.2 Generative LLMs Cannot Be Factual -- 5.3 Generative LLMs With Auxiliary Tools Still Struggle To Be Factual.
    Type of Medium: Online Resource
    Pages: 1 online resource (249 pages)
    Edition: 1st ed.
    ISBN: 9783031548277
    Language: English
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...