GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Marine eutrophication. ; Nutrient pollution of water. ; Primary productivity (Biology). ; Nutrient cycles. ; Estuarine oceanography. ; Aquatic ecology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (315 pages)
    Edition: 1st ed.
    ISBN: 9781402030215
    Series Statement: Aquatic Ecology Series ; v.2
    DDC: 577.786
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 27 (1992), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. We analysed photosynthetic rates and inorganic carbon use of thirty-five vascular macrophyte species collected submerged in eight nutrient- and CO2-rich Danish lowland streams. The species were classified in four groups as mainly terrestrial, homophyllous and heterophyllous amphibious and truly submerged. These groups represent plant species differently adapted to life in water.2. Photosynthetic rates measured in water increased in the gradual transition from mainly terrestrial, through amphibious to truly submerged species. Species normally in contact with air adapted to submergence by increasing the photosynthetic rate at limiting CO2. Photosynthetic rates of submerged parts of heterophyllous amphibious species were close to those of submerged species. Submerged species with thin or finely dissected leaves had the highest photosynthetic rates, probably because of low diffusional resistance to uptake of nutrients and gases.3. In contrast to submerged species, terrestrial and amphibious species were unable to use HCO3−. Extensive oversaturation with CO2 in the streams allows, however, many amphibious species to photosynthesize well under water, based on CO2-use alone. Amphibious CO2-users, with very few structural adaptations to life under water, can therefore be as dominant in the submerged vegetation of lowland streams as HCO3−-using water plants. Moreover, the streams provide open space for colonization from the dense vegetation ashore.4. Among the 1265 Danish herbaceous species no less than seventy-five terrestrial species occasionally grow submerged, forty-five species are amphibious, and fifty-one are true water plants. These numbers suggest that adaptation to permanent or temporary submergence is an ongoing process involving many species and that the land-water interface does not represent as difficult a barrier as often believed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Plant allometry ; Photosynthetic metabolism ; Photosynthetic structures ; Thickness ; Chlorophyll a concentration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested the existence of general patterns in the photosynthetic metabolism of oxygen-evolving organisms, based on a compilation of data for 315 species ranging from cyanobacteria to tree leaves. We used thickness and chlorophyll a concentration of the photosynthetic structure (cell, thallus, leaf) to scale differences in photosynthetic metabolism among plants, because of the demonstrated importance of these plant traits in regulating light absorption properties and photosynthetic rates of particular plant groups. We examined only the properties of the photosynthetic structure because this is the plant unit responsible for the photosynthetic process and thus is closely related to plant productivity, whereas there is a lack of general quantitative descriptors of the whole organism useful for such broad-scale comparisons, and few studies report net photosynthetic rates of whole organisms, including respiration rates of all non-photosynthetic structures. The results demonstrated that descriptors of plant metabolism such as maximum net photosynthesis, initial slope of the photosynthesis-irradiance (PI) curve and dark respiration display strong positive interrelationships. The metabolic rates declined with increasing thickness of the photosynthetic structures and more steeply for photosynthesis than respiration. Photosynthetic rates also changed with increment of volume of the photosynthetic structure resembling patterns that have been previously described for animal metabolism related to body weight. The strong relationship of metabolic rate and chlorophyll a concentration to the thickness of photosynthetic tissue reflects broad-scale patterns and not the adaptive response of individual or closely-related species of similar tissue thickness to varying environmental conditions. Thickness of the photosynthetic structures, therefore, plays an important role in the environmental control of plant performance and, consequently, it might have been an important driver of plant evolution, setting thresholds to the metabolism and productivity of phototrophic organisms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Littorella uniflora ; Terrestrial isoetids ; Carbon uptake ; Sediment CO2 utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Submerged macrophytes of the isoetid life form derive the majority of their CO2 for photosynthesis from the sediment. The experiments described here were designed to test the hypothesis that root uptake of CO2 is important also in the terrestrial form of Littorella uniflora. The results of 14CO2 experiments showed that sediment CO2 contributed 56% of the total fixation at 0.1mm CO2 in the rhizosphere, 83% at 0.5mm and 96% at 2.5mm. Sediment CO2 in emergent Littorella stands ranged from 0.1 to 1.0mm and averaged 0.5mm. Measurements of the net CO2 exchange over the leaves showed an even higher dependence of the sediment as CO2 source. Littorella leaves had no stomata at the base and densities (ca. 100 mm−2) typical of terrestrial plants at the tip, allowing sediment-derived CO2 to be supplied along the length of the leaf. The stomata permit supply of CO2 from the air during periods of reduced sediment CO2 concentrations (e.g. if the sediment dries up) and regulate transpiration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 81 (1989), S. 364-368 
    ISSN: 1432-1939
    Keywords: Submerged macrophytes ; Photosynthetic rates ; Chlorophyll content ; Relative surface area ; CO2 limitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Fourteen temperate, submerged macrophytes were cultivated in the laboratory at high DIC levels (3.3–3.8 mM), 10.4–14.4 mol photons (PAR) m-2 d-1 and 15°C. Photosynthesis at photosaturation ranged between 0.59 and 17.98 mg O2 g-1 DW h-1 at ambient pH (8.3) and were markedly higher between 1.76 and 47.11 mg O2 g-1 DW h-1 at pH 6.5 under elevated CO2 concentrations. Photosynthetic rates were significantly related to both the relative surface area and the chlorophyll content of the leaves. Consequently, the photosynthetic rate was much less variable among the species when expressed per surface area and chlorophyll content instead of dry mass. The chlorophyll content was probably a main predictor of photosynthesis of submerged leaves because of the direct relationship of chlorophyll to the light harvesting capacity and/or a coupling to the capacity for photosynthetic electron transport and carboxylation. A comparison with terrestrial leaves characterized the submerged leaves by their low chlorophyll concentrations and low photosynthetic rates per surface area due to the thin leaves. Photosynthetic rates per chlorophyll content in submerged leaves at CO2 saturation, however, were at the same level as photosynthesis in terrestrial leaves measured at ambient CO2 when appropriate corrections were made for differences in incubation temperature.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5052
    Keywords: Amphibious plants ; Growth rate ; Littorella uniflora ; Morphological adaptations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Morphological – anatomical features of the terrestrial and the aquatic life form of the rosette species Littorella uniflora, inhabiting nutrient poor soils of oligotrophic lakes, were investigated together with growth rates of both life forms and of transplants. Growth rates were the same for the two life forms. However, growth of transplanted plants was somewhat reduced by transition from one environment to another. This was especially true for aquatic plants, which may be stressed by desiccation when moved to the terrestrial environment. The morphological – anatomical differences between the life forms were small compared with many other amphibious species which produce highly specialized leaves and life forms in air and under water. It is suggested that the conservative leaf morphology of Littorella is a consequence of the high dependence on rhizospheric CO2 of both the aquatic and the terrestrial form of Littorella, making production of leaves specialized for carbon uptake in one specific environment unnecessary.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-06
    Description: This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum 〉2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (〈2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anticoagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Aquaculture has been one of the fastest-growing food production systems sectors for over three decades. With its growth, the demand for alternative, cheaper and high-quality feed ingredients is also increasing. Innovation investments on providing new functional feed alternatives have yielded several viable alternative raw materials. Considering all the current feed ingredients, their circular adaption in the aquafeed manufacturing industry is clearly of the utmost importance to achieve sustainable aquaculture in the near future. The use of terrestrial plant materials and animal by-products predominantly used in aquafeed ingredients puts a heavily reliance on terrestrial agroecosystems, which also has its own sustainability concerns. Therefore, the aquafeed industry needs to progress with functional and sustainable alternative raw materials for feed that must be more resilient and consistent, considering a circular perspective. In this review, we assess the current trends in using various marine organisms, ranging from microorganisms (including fungi, thraustochytrids, microalgae and bacteria) to macroalgae and macroinvertebrates as viable biological feed resources. This review focuses on the trend of circular use of resources and the development of new value chains. In this, we present a perspective of promoting novel circular economy value chains that promote the re-use of biological resources as valuable feed ingredients. Thus, we highlight some potentially important marine-derived resources that deserve further investigations for improving or addressing circular aquaculture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical, cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article synthesizes the essence, opportunities, responsibilities, and challenges encountered in marine biotechnology and outlines the attainment and valorization of directly derived or bio-inspired products from marine organisms. First, the concept of bioeconomy is introduced. Then, the diversity of marine bioresources including an overview of the most prominent marine organisms and their potential for biotechnological uses are described. This is followed by introducing methodologies for exploration of these resources and the main use case scenarios in energy, food and feed, agronomy, bioremediation and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being sectors. The key aspects in the fields of legislation and funding are provided, with the emphasis on the importance of communication and stakeholder engagement at all levels of biotechnology development. Finally, vital overarching concepts, such as the quadruple helix and Responsible Research and Innovation principle are highlighted as important to follow within the marine biotechnology field. The authors of this review are collaborating under the European Commission-funded Cooperation in Science and Technology (COST) Action Ocean4Biotech – European transdisciplinary networking platform for marine biotechnology and focus the study on the European state of affairs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...