GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Catalysts -- Design. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (342 pages)
    Ausgabe: 1st ed.
    ISBN: 9783527625338
    DDC: 541.395
    Sprache: Englisch
    Anmerkung: Design of Heterogeneous Catalysts: New Approaches based on Synthesis, Characterization and Modeling -- Contents -- Preface -- List of Contributors -- 1 Use of Oxide Ligands in Designing Catalytic Active Sites -- 1.1 Introduction -- 1.2 Molecular Structural Determination of Supported Metal Oxide Catalysts withIn SituRaman Spectroscopy -- 1.3 Characterization of AlOx,TiO x, and ZrOx Surface-Modied SiO2 -- 1.4 Anchoring Site of Surface M1Ox Species on Supported M2Ox/SiO2 -- 1.5 Molecular Structure of Dehydrated Supported V2O5/SiO2 and V2O5/M2Ox/SiO2 Catalyst Systems -- 1.6 Molecular Structure of Dehydrated Supported MoO3/SiO2 and MoO3/M2Ox/SiO2 Catalyst Systems -- 1.7 Molecular Structure of Dehydrated Supported Re2O7/SiO2 and Re2O7/M2Ox/SiO2Catalyst Systems -- 1.8 Electronic Structure of Dehydrated Supported MOx/SiO2 and M1Ox/M2Ox/SiO2 Catalysts viaIn SituUV-Vis Spectroscopy -- 1.9 Determination of Surface Kinetic Parameters -- 1.10 Redox Surface Reactivity of Model Supported M1Ox/SiO2 Catalysts -- 1.11 Redox Surface Reactivity of Supported M1Ox/M2Ox/SiO2 Catalysts -- 1.12 Conclusions -- References -- 2 Optimal Design of Hierarchically Structured Porous Catalysts -- 2.1 Introduction -- 2.1.1 Intrinsic Catalytic Activity and Selectivity: the Atomic and the Nanoscale -- 2.1.2 Catalyst Particle Size and Geometry: A Question of Reactor Engineering -- 2.1.3 Porous Catalyst Architecture and Optimization Methods -- 2.1.4 Learning from Nature -- 2.2 Optimizing Mesopore Connectivity and Shape -- 2.2.1 Topology, Order, and Randomness -- 2.2.2 Surface Roughness and Fractal Morphology -- 2.3 Optimizing Catalysts by Macroscopic Distributions in Activity -- 2.4 Optimal Design of the Highway Network -- 2.4.1 Novel Capabilities in Synthesizing Hierarchical Pore Spaces -- 2.4.2 Theoretical Optimization Studies: Opportunities for Optimal Design. , 2.4.3 Application to the Design of a Bimodal Porous Catalyst for NOx Abatement -- 2.5 Conclusions -- References -- 3 Use of Dendrimers in Catalyst Design -- 3.1 Introduction -- 3.2 Modified Dendrimer Catalysts -- 3.2.1 Dendrimer Synthesis -- 3.2.2 Dendrimer Properties Important for Catalysis -- 3.2.3 Cooperative Catalysis -- 3.2.4 Site Isolation -- 3.3 Indirect Effects of Dendrimer Architecture -- 3.3.1 Polarity Gradients -- 3.3.2 Steric and Diffusion Effects -- 3.3.3 Comparing Dendrimers with Soluble Polymers -- 3.3.4 Other Novel Dendrimer Effects -- 3.4 Catalysis by Dendrimer Encapsulated Nanoparticles -- 3.4.1 Nanoparticle Synthesis -- 3.4.2 Catalysis by Monometallic DENs -- 3.4.3 Bimetallic Nanoparticles -- 3.4.4 Catalysis by Bimetallic DENs -- 3.5 Dendrimer Templated Nanocages -- 3.6 Conclusion -- References -- 4 Rational Design Strategies for Industrial Catalysts -- 4.1 Introduction -- 4.2 The First Stages Toward Commercialization of a Catalyst -- 4.3 Catalyst Discovery to Commercialization -- 4.3.1 Catalyst Preparation -- 4.3.2 Catalyst Testing -- 4.3.3 Advanced Testing in Accordance to the Duty Cycle -- 4.3.4 Aging Studies -- 4.3.5 Kinetics -- 4.3.6 Catalyst Scale-Up -- 4.3.7 Quality Control -- 4.4 Example 1: Automobile Pollution Abatement Catalyst System -- 4.4.1 The Quality of the Fuel -- 4.4.2 Base Metals Versus Precious Metals -- 4.4.3 Particulate Versus Monolithic Structures -- 4.4.4 The First Generation -- 4.4.5 The Final Test -- 4.5 Example 2: Dehydrogenation of Light Alkanes -- 4.5.1 Understanding Reaction Kinetics, Thermodynamics, and Process Constraints -- 4.5.2 Formulating the Catalyst -- 4.5.3 Pilot Plant Testing -- 4.5.4 Field Testing -- 4.5.5 Commercial Launch -- 4.6 Example 3: Petroleum Rening-Fluid Catalytic Cracking -- 4.6.1 Understanding Deactivation -- 4.6.2 Age Distribution -- 4.6.3 Attrition -- 4.6.4 Feed Effects. , 4.6.5 Scale-Up and Commercialization -- 4.7 Conclusions -- References -- 5 Chiral Modification of Catalytic Surfaces -- 5.1 Introduction -- 5.2 Modification of Metal Surfaces by Cinchona Alkaloid and Related Compounds -- 5.2.1 General Background -- 5.2.2 Ordering Within the Adsorbed Layers -- 5.2.3 Modifier-Substrate Interactions -- 5.2.4 Adsorption Geometry -- 5.2.5 Influence of Reaction Conditions -- 5.2.6 Competitive Adsorption of Modiers -- 5.3 Modification of Metal Surfaces by Tartaric Acid and Related Compounds -- 5.3.1 General Background -- 5.3.2 Long-Range Order Within the Adsorbed Layers -- 5.3.3 Local Chirality on the Surface -- 5.3.4 Identification of Chiral Sites on Surfaces -- 5.4 Conclusions -- References -- 6 Catalytic Nanomotors -- 6.1 Introduction -- 6.1.1 Biological Motors -- 6.1.2 Artificial Catalytic Nanomotors -- 6.2 The Propulsion Mechanism of Catalytic Nanomotors -- 6.2.1 Diffusiophoresis -- 6.2.2 Self-Electrophoresis -- 6.2.3 Bubble Propulsion -- 6.2.4 Interfacial Tension Gradients -- 6.2.5 Bioelectrochemical Propulsion -- 6.3 Advanced Design of Catalytic Nanomotors -- 6.3.1 Dynamic Shadowing Growth -- 6.3.2 Rotary Si-Pt Nanorod Nanomotors -- 6.3.3 L-Shaped Nanorod Nanomotors -- 6.3.4 Rolling Nanospring -- 6.3.5 Hinged Nanorods -- 6.4 Applications, Challenges, and Perspectives -- References -- 7 Rational Design and High-Throughput Screening of Metal Open Frameworks for Gas Separation and Catalysis -- 7.1 Introduction -- 7.2 MOF General Features and Brief State of the Art -- 7.2.1 A Building Block Construction -- 7.2.2 Robust Open, Functionalized, and Sizeable Frameworks -- 7.2.3 MOFs Synthesis -- 7.2.4 Adsorption Properties of MOF -- 7.2.5 Rational Strategies to Design MOFs for Targeted Applications -- 7.3 Combinatorial Design of MOF for CO2 Capture in a PSA Process -- 7.3.1 Process Specifications. , 7.3.2 General Properties of MOFs for CO2 Adsorption -- 7.3.3 MOF Design for CO2 Capture -- 7.3.3.1 ''Structural''Route for Design Strategy -- 7.3.3.2 ''Functionalization''Route for Design Strategy -- 7.3.4 Combinatorial Screening Methodology at IRCELYON -- 7.3.5 Combinatorial Synthesis -- 7.3.5.1 Protocol -- 7.3.5.2 Method Validation -- 7.3.5.3 Screening of Metal-BTC System -- 7.3.6 Characterization of Representative Samples -- 7.3.7 HT Testing and CO2-CH4 Isotherms of Selected Samples -- 7.4 MOF Design for Catalytic Application -- 7.4.1 Properties of MOF in Catalysis -- 7.4.1.1 Lewis Acid Catalysis -- 7.4.1.2 Brönsted Acid Catalysis -- 7.4.1.3 Basic and Enantioselective Catalysis -- 7.4.1.4 C-C Coupling -- 7.4.1.5 Metal Catalysis -- 7.4.1.6 Wall Functionalization -- 7.4.1.7 Postfunctionalization -- 7.4.2 MOFs-Are They''Heterogenized''Catalysts or Solid Catalysts? -- 7.4.2.1 Engineering of Structural Defects in MOF -- 7.4.2.2 Probing Acid Centers by Alkylation Reactions -- 7.4.2.3 Catalyst Characterization -- 7.4.2.4 General Statements on MOF Application for Catalysis -- 7.5 Conclusion -- References -- 8 Design of Bimetallic Catalysts: From Model Surfaces to Supported Catalysts -- 8.1 Introduction -- 8.2 Experimental and Theoretical Methods -- 8.2.1 Experimental Techniques -- 8.2.2 DFT Modeling -- 8.3 Results and Discussion -- 8.3.1 UHV and DFT Studies on Pt-Ni Model Surfaces -- 8.3.1.1 Adsorption and Desorption of Hydrogen -- 8.3.1.2 Disproportionation and Hydrogenation of Cyclohexene -- 8.3.2 Characterization and Reactor Studies of Supported Pt-Ni Catalysts -- 8.3.2.1 TEM and EXAFS Characterization of Ni/Pt/Al2O3 Catalysts -- 8.4 Conclusions -- References -- 9 Self-Assembled Materials for Catalysis -- 9.1 Introduction -- 9.2 Mesocale Design -- 9.2.1 Inclusion of Heteroatoms -- 9.2.1.1 Acid Sites -- 9.2.1.2 Dispersed Metal Oxides. , 9.2.2 Embedded Nanoparticles -- 9.2.3 Nonsiliceous Mesoporous Materials -- 9.2.3.1 Molecule Self-Assembly to Mesoporous Catalysts -- 9.2.3.2 Nanoparticles Self-Assembly to Mesoporous Catalysts -- 9.2.4 Self-Assembly of Zeolite Seeds into Mesophase -- 9.2.5 Organic Functional Groups as Catalysts -- 9.3 Designing Catalysts at the Nanoparticle Surfaces -- 9.3.1 Polyoxometalates: Nanoparticles with Cations -- 9.3.2 Dendrimer-Stabilized Metal Nanoparticles -- 9.4 Perspectives -- References -- 10 Theory-Aided Catalyst Design -- 10.1 Introduction -- 10.2 Catalytic Descriptors -- 10.2.1 Electronic Descriptors -- 10.2.2 Energetic Descriptors -- 10.2.3 Adsorption Energies or Binding Energies -- 10.2.4 High-Throughput Screening -- 10.3 High-Throughput Simulation and Design -- 10.3.1 NO Decomposition -- 10.3.2 Vinyl Acetate (VAM) Synthesis -- 10.4 Controlled Patterning -- 10.5 Catalyst Synthesis and Stability -- 10.6 Conclusions -- References -- 11 Use of In Situ XAS Techniques for Catalysts' Characterization and Design -- 11.1 Introduction -- 11.2 The X-Ray Absorption Techniques -- 11.2.1 Principles and Feasibility -- 11.2.2 Data Acquisition -- 11.2.3 Spectral Analysis and Interpretations -- 11.3 Recent Applications of X-Ray Absorption Techniques to the Design of Heterogeneous Catalysts -- 11.3.1 Time Resolution -- 11.3.2 High-Resolution XANES -- 11.3.3 High Detection Sensitivity -- 11.3.4 Spatial Resolution -- 11.3.5 Coupling of Techniques -- 11.4 Perspective -- 11.4.1 Time-Resolved Ultrafast X-Ray Absorption Spectroscopy -- 11.4.2 X-Ray Emission Spectroscopy (XES) and Resonant Inelastic X-Ray Scattering Spectroscopy (RIXS) -- 11.5 Conclusions -- References -- 12 Catalyst Design Through Dual Templating -- 12.1 Introduction -- 12.2 Surfactant-Assisted Self-Assembly of Mesoporous Metal Oxides -- 12.2.1 Fundamentals -- 12.2.2 Thermal Stability Considerations. , 12.2.3 Mesostructuring via Evaporation-Induced Self-Assembly.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 2363-2371 
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 29 (1990), S. 1136-1142 
    ISSN: 1520-5045
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 29 (1990), S. 1454-1459 
    ISSN: 1520-5045
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 32 (1993), S. 1622-1630 
    ISSN: 1520-5045
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 97 (1993), S. 11524-11529 
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1520-5029
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Energietechnik , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Energy & fuels 8 (1994), S. 830-838 
    ISSN: 1520-5029
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Energietechnik , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...