GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Schwerhörigkeit ; Implantierbare Hörgeräte ; Elektronisches Hörimplantat ; TICA ; Key words Sensorineural hearing loss ; Implantable hearing aid ; Electronic hearing implant ; TICA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary Recently, Zenner et al. implanted the first totally implantable electronic hearing devices in patients with SNHL (HNO 46 [1998] 844–852). In the present report, technical and audiological features of the implant TICA are published. The development of the piezoelectric transducer and the microphone for implantation in the posterior wall of the auditory canal as components for the present fully implantable hearing system has already been described (HNO 45, 1997, 792–880). Here we report about our experience with the electronic main module that completes the TICA LZ 3001 system. This module is suited for implantation in the mastoid bone and contains the signal-processing electronics and an integrated battery that can be recharged transcutaneously with a portable charger. The recharging time is around 2 h for an implant operating time of 50h. The microphone and transducer connectors allow for easy replacement of the main module when the battery lifetime is reached. This lifetime is around 3–5 years. A small wireless remote control allows volume adjustment, contains an on/off switch, and permits selection of four different individual hearing programs. The basic audiological features are provided by a flexible, digitally programmable 3-channel-AGC-system with a peak clipping function. The total bandwidth is around 10 kHz. To our knowledge this is the first fully implantable hearing system that has been in implanted in humans.
    Notes: Zusammenfassung Kürzlich wurde über die Entwicklung eines elektromechanischen, piezoelektrischen Wandlers und eines Mikrofons zum subkutanen Einbau in die hintere Gehörgangswand als Komponenten eines zukünftigen vollständig implantierbaren Hörsystems für Innenohrschwerhörige berichtet (HNO 45, 1997, 792–880). Zwischenzeitlich konnte die Entwicklung eines elektronischen Hauptmoduls zur Implantation auf dem Planum mastoideum abgeschlossen werden, das diese Mikrofone und Wandler zu dem kompletten Hörimplantat TICA® LZ 3001 ergänzt. Dieses Hauptmodul enthält neben der signalverarbeitenden Elektronik eine spezielle Batterie, die transkutan mit einem portablen Ladegerät nachgeladen wird. Nach einer Volladung, die ca. 2 h benötigt, ist das Implantat für rund 50 h kontinuierlich betriebsbereit. Das Ladegerät wird ähnlich wie bei Mobiltelefonen in einer netzbetriebenen Station nachgeladen. Lösbare Steckverbindungen zu Mikrofon und Wandler ermöglichen den einfachen operativen Austausch des Hauptmoduls, wenn die Batterielebensdauer erreicht ist. Dies wird nach ca. 3–5 Jahren erwartet. Dem Patienten steht eine kleine, drahtlose Fernbedienung zur Verfügung, mit der Lautstärke, Ein/Aus sowie 4 Hörprogramme für unterschiedliche Hörsituationen eingestellt werden können. Die grundlegenden audiologischen Eigenschaften sind durch ein flexibel digital programmierbares 3-Kanal-AGC-System mit Peak-clipping-Funktion gegeben. Die gesamte Übertragungsbandbreite beträgt ca. 10 kHz. Das vollimplantierbare Hörsystem wurde im Rahmen der klinischen Erprobung Anfang Juni 1998 erstmals am Menschen angewendet.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Schwerhörigkeit ; Cochlea-amplifier-Implantat ; Implantierbares Hörgerät ; TICA ; Key words Sensorineural hearing loss ; Cochlea amplifier implant ; Implantable hearing aid ; Electronic hearing implant ; TICA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary For the majority of patients with sensorineural hearing loss (SNHL) many available hearing aids often do not achieve satisfactory results. For these patients partially implantable hearing devices have been developed, allowing distortion-free hearing and speech intelligibility that may be superior to conventional hearing aids. The external parts of partial implants, however, may result in a patient’s stigmatization. Furthermore, they do not use the acoustic properties of the external auditory canal. Recently, we published the successful development of the first totally implantable hearing device for the treatment of SNHL (HNO 46 [1998] 853–863). Here we report the first implantations of this unique, totally implantable electronic hearing system in patients with SNHL: Implex TICA LZ 3001. The implant microphone is implanted subcutaneously in the outer ear canal near the ear drum. The signal is processed by a digitally programmable multichannel audioprocessor located subcutaneously on the bony skull behind the ear. A piezoelectric transducer is coupled to the body of the incus and drives the ossicular chain by vibratory actions. Energy is provided by an implantable battery. Implanted patients describe hearing as being distortion-free and transparent. Speech intelligibility and the hearing of music are improved. Patients may achieve better speech discrimination, especially in the presence of background noise. The aid can be used during sports, including swimming. To our knowledge, this is the first report of the implantation of a totally implantable electronic hearing system in patients. These results encourage further implantations of the totally implantable hearing system in the course of an ongoing clinical study.
    Notes: Zusammenfassung: Für die Mehrzahl der Innenohrschwerhörigen kann selbst mit modernster Hörgerätetechnik keine die Patienten zufriedenstellende Hörrehabilitation erzielt werden. Für diese große Zahl von Betroffenen ohne adäquate Versorgung sind teilimplantierbare Hörgeräte entwickelt worden, die konventionellen Hörgeräten besonders bei Klangtreue und Sprachverständlichkeit deutlich überlegen sein können. Allerdings können sie den Kranken durch außen an Kopf oder Körper zu tragende Teile stigmatisieren. Auch nutzen sie die Störschallunterdrückung als auch die auditorische Raumorientierung mittels des äußeren Gehörgangs noch nicht aus. Hier berichten wir über die ersten Implantationen eines neuartigen, vollständig implantierbaren Hörsystems (TICA® LZ 3001) bei Innenohrschwerhörigen. Es nimmt den Schall über ein trommelfellnahes Mikrophon durch die intakte Gehörgangshaut auf. Ein retroaurikulär subkutan implantierter, mehrkanaliger digital programmierbarer Audioprozessor verarbeitet das Signal und gibt es über einen piezoelektronischen Wandler im Mastoid an den Amboßkörper weiter. Energie wird durch eine implantierbare Batterie bereitgestellt. Implantierte Patienten empfinden das Gehörte als verzerrungsfrei und transparent. Sie verstehen Sprache und empfinden Musik besser als ohne Implantat. Insbesondere im Störlärm kann z.T. ein erheblich verbessertes Sprachverständnis erreicht werden. Die bisherigen Ergebnisse ermutigen, weitere Implantationserfahrungen mit dem vollständig implantierbaren Hörsystem zu sammeln.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Implantierbares Hörgerät ; Ohr ; Mikromanipulator ; Felsenbein ; Intraoperative Kettenankopplung ; Gehörknöchelchenkette ; TICA ; Key words Implantable hearing aid ; Ear ; Tübingen implant ; Micromanipulator ; Temporal bone ; Intraoperative coupling ; Ossicular chain ; TICA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary The first electronic implantable hearing aids for patients with hearing loss are coupled to the ossicular chain or perilymph during implantation and are now available. Our new Tübingen implant designed for sensorineural hearing loss (SNHL) is the combination of an implantable microphone and piezotransducer. To avoid hearing losses during implantation, the Tübingen piezotransducer will be (1) fixed to the mastoid cavity and (2) positioned to one of the ossicular target points. This can be done with a micromanipulator which will be implanted together with transducer and microphone in the mastoid cavity. The manipulator weights 0.7 g. With four degrees of freedom, it allows highly secure and safe positioning of the transducer´s probe tip to the ossicular chain under close to stereotactic conditions. The main advantages of the present micromanipulator are (1) easy handling during surgery, (2) the transducer’s precise positioning to the ossicular target point with sufficient degrees of freedom, and (3) the transducer’s stable fixation in the mastoid cavity in the final position. Following integrated safety as the leading principle, ossicular or inner ear injuries caused, e.g., by the patient’s head movement or unintentional manual contact by the surgeon, are minimized. The micromanipulator is, as it were, the surgeon’s vibration-free ”artificial hand”. The manipulator’s development and its optimization to the mastoid cavity by test implantation in 50 human temporal bones are shown in detail. While coupling the transducer to the body of the incus, transducer, microphone, and micromanipulator can be implanted into 76% of all mastoid cavities without protrusion. In the case of transducers coupling to the long process of the incus, the protrusion-free implantation rate of the above-mentioned three implant modules is 78%.
    Notes: Zusammenfassung Für die Versorgung von Schwerhörigkeiten stehen heute erste elektronische Hörimplantate zur Verfügung, die während der Implantation an eines der Ossikel oder an die Perilymphe angekoppelt werden. Ein neuartiges Implantat ist das aus Mikrophon und Wandler bestehende TICA® Implantat, das für die operative Versorgung von Innenohrschwerhörigkeiten geeignet ist. Zur Vermeidung intraoperativer Hörschäden wird der Wandler zunächst im Mastoid fixiert, um anschließend mit einer möglichst großen Anzahl geometrischer Freiheitsgrade und größtmöglicher Sicherheit quasi stereotaktisch an den gewünschten Ankoppelpunkt der Ossikelkette geführt zu werden. Dazu wurde ein nur 0,7 g wiegender Mikromanipulator entwickelt, der zusammen mit dem Wandler und dem Mikrophonmodul in die Mastoidhöhle implantiert wird. Der hier gezeigte Mikromanipulator zeichnet sich durch eine einfache intraoperative Handhabbarkeit, eine ausreichend präzise, vierachsige Führung des Wandlers bis zu seiner Ankopplung am Ossikel sowie durch eine dauerhafte Fixierung der endgültigen räumlichen Wandlerlage in der Mastoidhöhle aus. Dem Prinzip der integrierten Sicherheit folgend wird durch geeignete konzeptionelle Maßnahmen eine Verletzungsgefahr für Ossikel oder Innenohr, hervorgerufen, z.B. durch unbeabsichtigte Handbewegungen des Chirurgen oder Kopfbewegungen des Patienten ausgeschlossen. Der Mikromanipulator dient somit quasi als vibrationsarme, „künstliche Hand” des Operateurs. Auf die Entwicklung des Tübinger Mikromanipulators sowie seiner schrittweisen Anpassung an die Anatomie der Mastoidhöhle durch Probeimplantation in n=50 Humanfelsenbeinen wird näher eingegangen. Die In-vitro-Probeimplantationen ergaben, daß sich der Wandler zusammen mit Mikromanipulator und Mikrophon bei Ankopplung an den Amboßkörper in 76% aller Mastoidhöhlen implantieren ließ, ohne daß ein Implantatteil die Wölbung der Schädelkalotte überragte. Bei Ankopplung an den langen Amboßfortsatz betrug die Implantierbarkeit ohne Prominenz 78%.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Hörprüfung ; Implantierbares Hörgerät ; Innenohr ; Gehörknöchelchenkette ; Elektronisches Hörimplantat ; Innenohrschwerhörigkeit ; Tübinger Implantat ; Minimalinvasive Chirurgie ; TICA ; Key words Hearing test ; Implantable hearing aid ; Inner ear ; Ossicular chain ; Tübingen implant ; Sensorineural hearing loss ; Minimal invasive surgery ; TICA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary First concepts of implantable hearing aids to be coupled to the ossicular chain are available for patients with combined or sensorineural hearing loss (SNHL) [9,11,12]. To ensure that hearing can be improved intraoperative coupling of a test transducer to the ossicular chain is mandatory for allowing surgical anatomy to be checked and vibratory hearing tests to be performed. To achieve this, the test transducer has to be held and positioned securely in situ for some minutes, avoiding risks for middle or inner ear structures. This is not possible using conventional surgical instruments. Thus, a micromanipulator to hold the test transducer during intraoperative hearing tests was developed. This surgical device allows the surgeon safe, risk-free, and controlled coupling of the test transducer to the ossicular chain with one axial and three rotational degrees of freedom. With the aid of a conventional ear retractor (2×2 prongs), the manipulator is fixed at the patient’s ear. In conjunction with a piezoelectric test transducer, the manipulator was used in nine patients during local anesthesia. The test transducer is part of an electronic hearing implant (Tübingen implant) specifically designed for SNHL that may be coupled to a middle ear ossicle or the perilymph of the cochlea. The micromanipulator was easy to handle. It allowed accurate positioning of the test transducer in the ear and the desired coupling of the transducer’s probe tip to the ossicular chain during auditory tests. According to the principles of integrated safety, the intraoperative risk of ossicular or inner ear injuries caused, for instance, by the patient’s head movement is minimized. The design of the manipulator system is universal, also allowing its use for other electronic hearing implants or minimal invasive surgery after minor modifications.
    Notes: Zusammenfassung Für die operative Versorgung von Mittel- und Innenohrschwerhörigkeiten gibt es Konzepte für implantierbare Hörgeräte, die während der Implantation an eines der Ossikel angekoppelt werden [9,11,12]. Dabei ist es nicht auszuschließen, daß in Einzelfälllen trotz korrekter Operationstechnik kein zufriedenstellender Hörgewinn erzielt wird. Um eine Hörverbesserung zu beurteilen, kann es daher zweckmäßig sein, intraoperativ vor der Implantation des Hörgeräts ein Testimplantat in das Ohr einzuführen, um so die Anpassung an die chirurgische Anatomie zu überprüfen und vibratorische (elektromechanische) Hörprüfungen durchführen zu können. Dazu muß das Implantat ohne Gefahr für die Gehörknöchelchenkette oder das Innenohr für einige Minuten räumlich fixiert an die Ossikelkette gehalten werden. Dies kann der Operateur mit konventionellen, manuell geführten Instrumenten nicht leisten. Es wurde daher ein intraoperativ einsetzbarer Mikromanipulator entwickelt, der dem Operateur die sichere mikrochirurgische Ankopplung des Testwandlers an ein Ossikel mit insgesamt vier Freiheitsgraden ermöglicht. Das Mikromanipulatorsystem läßt sich mit einem konventionellen Ohrsperrer in situ verankern. Es wurde bei n=9 Patienten mit Schalleitungs-schwerhörigkeit oder kombinierter Schwerhörigkeit für intraoperative Hörprüfungen mit einem Tübinger Testimplantat in Lokalanästhesie angewendet. Dabei zeigten sich eine einfache Handhabbarkeit des Mikromanipulators, eine präzise Führung des Testwandlers bis zur Ankopplung an das gewünschte Ossikel sowie die erwünschte räumliche Fixierung des Testwandlers während der Hörprüfungen. Die Hörprüfungen ließen sich komfortabel für Patient und Operateur durchführen. Durch geeignete konzeptionelle Maßnahmen wird eine Verletzungsgefahr für Ossikel oder Innenohr, hervorgerufen z.B. durch Kopfbewegungen des Patienten, minimiert. Mit leicht durchzuführenden Modifikationen kann der hier vorgestellte operative Mikromanipulator auch für andere mikrochirurgische und minimal-invasive Anwendungen angepaßt werden.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Schwerhörigkeit ; TICA ; CAI ; Implantierbares Hörgerät ; Cochlear Implant ; Key words Hearing loss ; TICA ; Implantable hearing aid ; Cochlea implant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary Active hearing implants have been developed to varying degrees for conductive hearing loss as well as for sensorineural hearing loss. Implants for conductive hearing loss match impedance transformation by the middle ear. They will be referred to as ITI (impedance transformation implants). Three partial ITIs have been developed for routine clinical use: the Swedish transcutaneous BAHA, the American subcutaneous AUDIANT, and the Japanese P-MEI. Of greater importance with respect to the number of patients are electronic implants for sensorineural hearing loss. These implants are designed to replace parts of the function of the cochlea amplifier (CA). Therefore, in this study, they will be called CAI (cochlea amplifier implant). The CAI consist of four parts: (1) transducer, (2) microphone, (3) control unit, and (4) battery. A CAI for routine clinical use does not yet exist. Two transducer principles have thus far been developed for use in CAIs: the electromagnetic (EM) and the piezoelectric (PE) principle. Most of the transducers that have been described are EM transducers. The American Maniglia implant and the American floating mass transducer have been tested in humans. Both belong to the category of high energy consuming (HEC) implants with a limited frequency range that does not contain the whole speech spectrum. This is in contrast to the Canadian electromagnetic Fredrickson-HEC implant which is capable of transmitting broad band signals of up to 10 kHz. All ot he HEC-EM transducers lack an implantable microphone and an implantable battery. The German CAI, one of the piezoelectrical implants, was recently implanted acutely in humans. It consists of a piezoelectrical, ossicle coupled, low energy consuming (LEC) transducer, as well as an implantable microphone. It allows a broadband signal of up to 10 kHz, yet at a considerably lower level of energy.
    Notes: Zusammenfassung Aktive Hörimplantate sind gegenwärtig sowohl für die Versorgung von Mittelohrschwerhörigkeiten wie für die Implantation bei Innenohrschwerhörigkeiten in unterschiedlichem Ausmaß entwickelt worden. Implantate für Mittelohrschwerhörigkeiten haben die Aufgabe, die Impedanztransformation auszugleichen und sollen hier als ITI (Impedanz-Transformations-Implantate) bezeichnet werden. Drei partielle ITI sind bis zur routinemäßigen, klinischen Anwendung entwickelt worden: Das schwedische, transkutane BAHA, der amerikanische, subkutane AUDIANT sowie das japanische P-MEI. Zahlenmäßig von erheblich größerer Bedeutung sind elektronische Implantate für Innenohrschwerhörige, die den kochleären Verstärker (cochlea amplifier: CA) ausgleichen sollen und in der vorliegenden Übersicht daher als CAI (Cochlea-Amplifier-Implantat) bezeichnet werden. Sie bestehen aus 4 Teilen: 1. Wandler, 2. Mikrophon, Schallaufnehmer, 3. Steuerungselektronik sowie 4. Batterie. Ein für die klinische Routineversorgung zugelassenes Implantat gibt es noch nicht. Zwei Wandlerprinzipien wurden bisher für CAI verwandt: Das elektromagnetische sowie das piezoelektrische Prinzip. Elektromagnetische Wandler sind in größerer Zahl entwickelt worden. Am Menschen erprobt wurden das amerikanische Maniglia-Implantat sowie der amerikanische „floating-mass-transducer”. Beide gehören zur Kategorie der hochenergieverbrauchenden (HEV) Implantate mit einem eingeschränkten Frequenzgang, der nicht den gesamten Sprachbereich umfaßt. Im Gegensatz dazu ist das kanadische, elektromagnetische Fredrickson-HEV-Implantat in der Lage, breitbandige Signale bis 10 kHz zu übertragen. Zu allen elektromagnetischen Wandlern gibt es weder ein implantierbares Mikrophon noch eine implantierbare Batterie. Von den piezoelektrischen Implantaten wurde kürzlich das Tübinger System beim Menschen akut implantiert. Es besteht aus einem piezoelektrischen, ossikelgekoppelten niedrigenergieverbrauchenden (NEV) Wandler sowie einem implantierbaren Mikrophon. Wie beim kanadischen Implantat erreicht die Signalübertragung breitbandig 10 kHz, dies jedoch bei einem erheblich geringeren Energieverbrauch.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Total implantierbares Hörgerät ; TICA ; Innenohrschwerhörigkeit ; Key words Fully implantable hearing aid ; TICA ; Sensorineural hearing loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary The perspectives for active hearing implants lie in the treatment of patients with sensorineural hearing loss (SNHL). The majority of patients with SNHL suffer from a cochlea amplifier (CA) failure which is discernible by a positive recruitment and loss of otoacoustic emissions (OAE). Therefore, the electronic implant is expected to partially replace functions of the CA. Thus, the implant is thought to function as a CAI (cochlea amplifier implant). An approved implant for routine use is not yet available. Clinical studies have thus far only used the high energy consuming (HEC), narrow-band, electromagnetic floating-mass transducer, as well as the Maniglia-HEC implant. The high energie consuming, yet broadband Canadian Fredrickson implant is soon to be used in humans. Of the piezoelectrical implants, a German CAI (Tübingen implant) at present consisting of a piezoelectrical transducer and a microphone has thus far been acutely implanted in first patient. It is a low energy consuming (LEC), broad-band implantable system for patients with sensorineural hearing loss. Routine surgical treatment of patients with sensorineural hearing loss with a CAI will only be achieved if complete implants (with transducer, microphones, batteries, and control unit) are made available. They combine distinct acoustic superiority with invisibility (end of stigmatization), an open ear canal, and hopefully, the end of feedback whistling. Among the implants mentioned, the German CAI is the only LEC implant. Its energy requirements are so low that with today’s technologie implantable batteries (e.g., in pacemakers), the additional implantation of an energy carrier seems feasible. Since the implantable microphone is already available in the German system, the only essential part missing for a totally implantable CAI is the implantable control unit.
    Notes: Zusammenfassung Die Perspektiven aktiver Hörimplantate liegen in Versorgung von Innenohrschwerhörigkeiten. Die Mehrzahl der Betroffenen mit einer Innenohrschwerhörigkeit leidet an einem Ausfall des kochleären Verstärkers (cochlea amplifier: CA) erkennbar an positivem Recruitment und Ausfall der otoakustischen Emissionen. Von einem elektronischen Hörimplantat wird man daher einen teilweisen Funktionsersatz des CA erwarten, so daß das Implantat funktionell als CAI (Cochlea-Amplifier-Implantat) ausgebildet sein sollte. Ein für die routinemäßige Versorgung zugelassenes Implantat steht weltweit noch nicht zur Verfügung. Klinische Studien wurden bisher mit dem relativ schmalbandigen, elektromagnetischen Hochenergie – (HE) „floating mass transducer” sowie mit dem Maniglia-HE-Implantat durchgeführt. Das ebenfalls hochenergieverbrauchende, jedoch breitbandige kanadische Fredrickson-Implantat steht kurz vor der Humananwendung. Unter den piezoelektrischen Implantaten wurde bisher ein deutsches, aus piezoelektrischem Wandler und Mikrophon bestehendes CAI (Tübinger Implantat) akut bei ersten Patienten implantiert. Es handelt sich um ein breitbandiges implantierbares Niederenergie – (NE) Hörgerät für Innenohrschwerhörige. Eine routinemäßige, operative Versorgung von Innenohrschwerhörigen mit einem CAI wird sich voraussichtlich erst dann durchsetzen, wenn totale (Wandler, Mikrophon, Batterie und Steuerungselektronik umfassende) Implantate zur Verfügung stehen. Sie vereinigen deutliche akustische Überlegenheit und Unsichtbarkeit (Wegfall der Stigmatisierung), offenen Gehörgang und Wegfall des Rückkopplungspfeifens. Unter den genannten Implantaten ist das deutsche CAI das einzige Niedrigenergieimplantat. Sein Eigenbedarf ist so niedrig, daß die heutige Technologie implantierbarer Batterien (z.B. von Herzschrittmachern) die Mitimplantation des Energieträgers denkbar scheinen läßt. Da zudem das implantierbare Mikrophon beim deutschen CAI ebenfalls schon zur Verfügung steht, fehlt bis zum vollständig implantierbaren CAI im wesentlichen noch die implantierbare Steuerungselektronik. Da diese technologisch vorstellbar ist, stehen wir voraussichtlich an der Schwelle zur zukünftigen, operativen Versorgung eines Teils der Patienten mit Innenohrschwerhörigkeit.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Schwerhörigkeit ; Implantierbares Hörgerät ; TICA ; Key words Hearing loss ; Implantable hearing aid ; TICA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary Hearing aids have fundamental disadvantages: (1) stigmatization of the patient; (2) the sound is often found to be unsatisfactory due to the limited frequency range and undesired distortion; (3) in many patients, the ear canal fitting device generally necessary leads to an occlusion effect; (4) acoustic feedback when amplification is high. Conventional hearing aids transmit sound into the ear canal via a small microphone. Sound has the disadvantage of requiring high output sound pressure levels for its transmission. This along with the necessary miniaturization of the loudspeaker as well as the resonances and reflections in the closed ear canal contribute to the disadvantages mentioned. In contrast, implantable hearing aids do not make sound signals but micromechanical vibrations. An implantable hearing aid has an electromechanical transducer instead of the loudspeaker of a conventional hearing aid. The hearing signal does not leave the transducer as sound but as a mechanical vibration which is directly coupled to the auditory system bypassing the air. This implantable hearing aid is either coupled to the tympanic membrane, the ossicular chain, the perilymph of the inner ear, or the skull. An implantable hearing aid is expected to have: 1 Better sound fidelity than a hearing aid 2 No ear canal fitting device, free ear canal 3 No feedback 4 Invisibility Requirements on electronic hearing implants designed for patients with conductive hearing loss differ from those on implants for sensorineural hearing loss. Conductive hearing loss requires the implant to replace the impedance transformation, thus being an impedance transformation implant (ITI). In various respects, the demands on an ITI are lower than the demands on an electronic hearing aid for patients with sensorineural hearing loss. The latter are mostly patients with a failure of the cochlea amplifier (CA). A damage to the CA is clinically discernible by a positive recruitment and loss of otoacoustic emissions (OAE). Since these patients form the majority of cases with sensorineural hearing loss, an active hearing implant for such patients should partially replace the function of the CA. Therefore, the suggestion is to refer to a CAI (cochlea amplifier implant). The implant expressions ITI (for patients with conductive hearing loss) and CAI (for patients with sensorineural hearing loss) used in this context allow nomenclatural association with the CI (cochlear implant) for complete inner ear failure as well as with the BSI (brainstem implant) in the case of hearing nerve failure.
    Notes: Zusammenfassung Die Versorgung von Schwerhörigen durch konventionelle Hörgeräte hat grundsätzliche Nachteile: 1. Stigmatisierung des Kranken, 2. der Klang der Hörgeräte wird aufgrund des beschränkten Frequenzbereichs und unerwünschter Verzerrungen nicht selten als unbefriedigend empfunden, 3. das in der Regel notwendige Ohrpaßstück führt bei zahlreichen Patienten zur Okklusionsgefühlen, 4. die akustische Rückkopplung zwischen Lautsprechermikrophon des Hörgeräts bei hoher Verstärkung, deren Vermeidung bei einigen Hörgeräten mit Abschwächung der Verstärkung erkauft wird. Ursache ist die Tatsache, daß konventionelle Hörgeräte über einen winzigen Lautsprecher Luftschall in den Gehörgang abgeben. Luftschall hat eine ungünstige Impedanz, so daß zur Schallübertragung auf das Ohr hohe Ausgangsschalldruckpegel erforderlich sind. Diese, zusammen mit der notwendigen Miniaturisierung der Lautsprecher sowie verbunden mit Resonanzen und Reflektionen im abgeschlossenen Gehörgang, tragen zu den genannten Nachteilen bei. Im Gegensatz dazu geben implantierbare Hörgeräte kein Schallsignal ab, sondern mikromechanische Vibrationen. Statt des Lautsprechers des konventionellen Hörgeräts besitzt ein implantierbares Hörgerät einen elektromechanischen Wandler. Das Hörsignal verläßt den Wandler nicht als Schall, sondern als mechanische Schwingung, die unter Umgehung der Luft mikromechanisch in das auditorische System eingekoppelt wird. Das implantierbare Hörgerät wird dazu entweder an Trommelfell oder Gehörknöchelchen, an die Perilymphe des Innenohrs oder an die Schädelkalotte angekoppelt. Von einem elektronischen Hörimplantat kann man erwarten: 1. im Vergleich zum Hörgerät bessere Klangwiedergabetreue; 2. kein Ohrpaßstück, freier Gehörgang; 3. keine Rückkopplung; 4. möglichst äußerlich unsichtbar. An elektronische Hörimplantate zur Versorgung von Mittelohrschwerhörigkeiten werden grundsätzlich andere Anforderungen gestellt als an Implantate zur Versorgung von Innenohrschwerhörigkeiten. Bei einer Mittelohrschwerhörigkeit muß das Implantat die Impedanztransformation übernehmen, so daß man von einem Impedanztransformationsimplantat (ITI) sprechen kann. Die Ansprüche an ein ITI sind in vielfältiger Hinsicht geringer als die Ansprüche an eine elektronische Hörhilfe zur Versorgung von Innenohrschwerhörigen. Bei letzteren handelt es sich weit überwiegend um Patienten mit Ausfall des kochleären Verstärkers (Cochlea Amplifier: CA). Eine Schädigung des CA ist klinisch erkennbar am positiven Recruitment sowie am Ausfall der otoakustischen Emissionen (OAE). Da diese Patienten die weit überwiegende Mehrzahl bilden, sollte ein aktives Hörimplantat zur Versorgung von Innenohrschwerhörigen die Funktion des CA teilweise ersetzen. Es wird daher vorgeschlagen, von einem CAI (Cochlea-Amplifier-Implantat) zu sprechen. Die hier vorgeschlagenen, funktionellen Bezeichnungen ITI (für Mittelohrschwerhörige) und CAI (für Innenohrschwerhörige) erlauben den Nomenklaturanschluß an das CI (Cochlear Implant) für den vollständigen Innenohrausfall sowie an das BSI (Brainstem Implant) bei Ausfall des Hörnerven
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Piezoelektrischer Wandler ; Implantierbares Hörgerät ; Implantierbares Mikrofon ; Implantierbarer Wandler ; Innenohrschwerhörigkeit ; Schwerhörigkeit ; CAI ; TICA ; Key words Piezoelectric transducer ; Implantable hearing aid ; Implantable microphone ; Implantable transducer ; Sensori-neural hearing loss ; Cochlea amplifier implant ; TICA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary A microphone constructed for implantation in the posterior wall of the auditory canal and a piezoelectric transducer serving as the main components of an implantable hearing aid were temporally implanted in five patients during middle ear surgery under local anesthesia. The microphone was positioned beneath the skin of the auditory canal such that it completely covered the microphone membrane. The vibratory element of the transducer was coupled to the malleus in four patients with normal ossicular chains and directly to the stapes in one patient with missing incus. The microphone and transducer were electrically connected with an external battery-driven signal amplifier. Speech material and music were presented in the operation room at a sound level of 65 dB SPL under free-field conditions. The patients had to estimate the quality of speech, music, and their own voice as well as the effects of bone-conducting noises. All patients were able to hear with the system. An intraoperative talk without vision contact was possible without any problems, as was understanding of numerals („Freiburger Zahlentest”). Perception of music was judged as „clear and undistorted with all broadband component.” The estimation was also valid for one patient with a sensorineural hearing loss. One patient declared the music to be „a little of unnatural.” Bone-conducted sound was estimated as normal in two patients, better than without an implant in one patient with sensorineural hearing loss, and „somewhat metallic” in another patient. Hearing the own voice was considered „normal” in two cases „monotonous” in one case, and „a little bit roaring” in another case. An amplification factor that can be technically realized in an implantable hearing aid was necessary for one of the patients with sensorineural hearing loss to perceive music at a pleasant volume. On the basis of this study, essential requirements for the construction of a fully implantable hearing aid are fulfilled.
    Notes: Zusammenfassung Ein zur Implantation in die hintere Gehörgangswand vorgesehenes Mikrofon und ein piezoelektrischer Wandler als Hauptkomponenten eines implantierbaren Hörgeräts wurden bei fünf Patienten während Mittelohroperationen in Lokalanästhesie akut implantiert. Das Mikrofon wurde unter die Gehörgangshaut so positioniert, daß die Haut flach und bündig die Mikrofonmembran bedeckte. Bei vier Patienten mit intakter Ossikelkette wurde das schwingungsübertragende Wandlerelement an den Hammer angekoppelt, bei einem Patient mit Kettenunterbrechung direkt an den Steigbügel. Mikrofon und Wandler waren mit einem externen, batteriebetriebenen Signalverstärker verbunden. Im Operationssaal wurden genormtes Sprachmaterial und Musik unter Freifeldbedingungen bei einem Schallpegel von 65 dB SPL dargeboten. Die Patienten beurteilten die Übertragungsqualität von Sprache, Musik, der eigenen Stimme sowie von mechanischen Reibgeräuschen am Kopf. Alle Patienten konnten mit dem System hören. Ein intraoperatives Gespräch ohne Sichtkontakt war problemlos möglich, ebenso wurden Freiburger Zahlworte durchwegs richtig wiedergegeben. Die Musikdarbietung wurde als „reiner Klang”, „klar” und mit „ausgeprägten Höhen und Bässen” bezeichnet. Dies galt auch für einen Patienten mit deutlicher Innenohrschwerhörigkeit. Ein Patient gab die Musik als „etwas unnatürlich klingend” an. Körperschall wurde in 2 Fällen als normal, bei einem Patient mit Innenohrkomponente als besser als ohne Implantat empfunden sowie in einem Fall als „metallisch” klingend angegeben. Die Empfindung der eigenen Stimme wurde von 3 Patienten in einem Fall als normal, beim 2. als „monoton” und vom 3. Patienten als „leicht dröhnend” beschrieben. Bei dem Patient mit deutlicher Innenohrbeteiligung war für eine angenehme Lautstärke bei Musik ein Verstärkungsfaktor notwendig, der bei einem implantierbaren Hörgerät technisch möglich ist. Damit sind die wesentlichen Voraussetzungen geschaffen, mit den beiden getesteten Komponenten Mikrofon und Wandler ein vollständig implantierbares Hörgerät zu realisieren.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Cochlea-Amplifier-Implantat ; Elektromechanischer Wandler ; Gehörknöchelchenkette ; Hörverbesserung ; Implantierbares Hörgerät ; Implantierbares Mikrofon ; Implantierbare ; wiederaufladbare Batterie ; Innenohrschwerhörigkeit ; Innenohrstimulator ; Mastoid ; Medizinprodukt ; Mittelohr ; Ohr ; Ossikel ; piezoelektrischer Wandler ; Schallempfindungsschwerhörigkeit ; TICA ; Transkutane Energieübertragung ; Tübinger Implantat ; Key words Cochlea-amplifier implant ; Ear ; Electromechanical transducer ; Hearing aid ; Hearing improvement ; Hearing loss ; Implant ; Implantable hearing aid ; Implantable microphone ; Implantable rechargeable battery ; Inner ear stimulator ; Mastoid ; Medical device ; Middle ear ; Ossicles ; Ossicular chain ; Piezoelectric transducer ; Sensorineural hearing loss ; TICA ; Transcutaneous energy transmission ; Tuebingen implant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary A fully implantable hearing aid consists of a sound receptor (microphone), an electronic amplifier including active audio-signal processing, an electromechanical transducer (actuator) for stimulating the ear by vibration, and an energy source. The energy source may be either a primary cell or a rechargeable (secondary) cell. As the energy requirements of an implantable hearing aid are dependent on the operating principle of the actuator, the operating principles of electromagnetic and piezoelectric transducers were examined with respect to their relative power consumption. The analysis showed that the energy requirements of an implantable hearing aid are significantly increased when an electromagnetic transducer is used. The power consumption of a piezoelectric transducer was found to be less than that of the electronic components alone. The energy needed to run a fully implantable hearing aid under these conditions would be 38 mWH per day. Primary cells cannot provide the energy needed for a minimum operation time of 5 years (70 WH), and therefore rechargeable cells must be used. A theoretical appraisal was carried out on nickel-cadmium, nickel-metal hydride, and lithium-ion cells to determine their suitability as well as to assess the risks associated with their use in an implant. Safety measures were drawn up from the results. Ni-MH cells were found to be the most suitable for use as an energy source for implantable hearing-aids because they are more robust than Li ion cells and their storage capacity is double that of Ni-Cd cells of similar size.
    Notes: Zusammenfassung Ein vollständig implantierbares Hörgerät besteht aus einem Schallempfänger (Mikrophon), einer Verstärkungselektronik mit Filtern und Regelbausteinen, einem elektromechanischen Wandler (Aktor) zur vibratorischen Anregung des Gehörs und einem Energiespeicher. Dieser Energiespeicher kann aus einer Primärbatterie oder aus einer wiederaufladbaren (Sekundär) Batterie bestehen. Der Energiebedarf des implantierbaren Hörgeräts ist davon abhängig, mit welchem Wandlerprinzip der Aktor arbeitet. Hier werden das elektromagnetische und das piezoelektrische Wandlerprinzip hinsichtlich ihrer Leistungsaufnahme betrachtet. Dabei zeigt sich, daß ein elektromagnetischer Wandler den Energiebedarf des implantierbaren Hörgeräts beträchtlich erhöht, während bei geeigneter Auslegung eines piezoelektrischen Wandlers die Leistungsaufnahme des Wandlers so gering gestaltet werden kann, daß sie gegenüber der Leistungsaufnahme der elektronischen Komponenten eine untergeordnete Rolle spielt. Bei optimierter Auslegung beträgt die für den Betrieb eines vollständig implantierbaren Hörgeräts benötigte Energie 38 mWh/Tag. Die für eine Lebensdauer von mindestens 5 Jahren benötigte Energiemenge von 70 Wh ist in Primärbatterien nicht mehr speicherbar, so daß wiederaufladbare Batterien eingesetzt werden müssen. Es werden Nickel-Cadmium (Ni-Cd-)-Nickel-Methallhydrid (Ni-MH-)- und Lithiumion-(Li-Ion-)-Zellen auf ihre Eignung für die Anwendung theoretisch untersucht. Dabei wird eine Risikobetrachtung für den Einsatz dieser Zellen in einem Implantat vorgenommen und ein Katalog von daraus folgenden Sicherheitsmaßnahmen aufgestellt. Als Ergebnis zeigt sich, daß die NI-MH-Zelle wegen ihrer Robustheit verglichen mit Li-Ion-Zellen und der ca. doppelt so großen Kapazität wie eine gleich große Ni-Cd-Zelle ein geeignetes System für die energetische Versorgung eines implantierbaren Hörgeräts darstellt.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1433-0458
    Keywords: Schlüsselwörter Implantierbares Hörgerät ; Schwerhörigkeit ; Gehörknöchelchen ; Tübinger Implantat ; Implantierbares Mikrophon ; Elektronisches Hörimplantat ; Koppelelemente ; TICA ; CAI ; Key words Implantable hearing aid ; Hearing loss ; Ossicular chain ; Tübingen implant ; Implantable microphone ; Ossicular connectors ; TICA ; CAI
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary Development and short-term implantation results of the Tübingen implantable hearing aid (TI=Tübingen implant) have been presented [12, 24, 25]. The TI is designed for patients with sensorineural hearing loss due to a malfunction of the cochlear amplifier. This can be identified by the presence of positive recruitment and the absence of TEOAE (transitory evoked otoacoustic emissions). The Tübingen implant functions in two ways: it allows electronic amplification of the auditory signal and electromechanical signal transduction into a micromechanical vibratory stimulus. There are two paths by which vibratory stimulus reaches the cochlea: (1) directly through a perforation in the stapes foot plate into the perilymph or (2) via the ossicular chain. Made of pure titanium, the casing of the helium-tight welded transducer includes the piezoelectric actuator. An implantable manipulator device is designed for transducer positioning and anchoring in the mastoid cavity [7, 9]. Usually, the transducer probe tip is directly coupled to the body of the incus. This functions without a special coupling device by utilization of an Erbium-YAG laser [8]. Special anatomical situations or the loss of incus and/or stapes suprastructure, however, requires coupling of the vibratory signal to other points of the ossicular chain or to the perilymph. A major problem, however, was an intraoperative, irreversible link between the titanium probe tip and coupling elements. To overcome this problem, the coupling elements were made of gold. A crimp technique was developed, allowing the surgeon to induce cold deformation of the gold. The cold deformation technique (crimp) results in an irreversible coupling between the titanium probe tip and the golden coupling element.
    Notes: Zusammenfassung Über Entwicklung und erste Akutimplantationen des aktiven Tübinger Hörimplantates bei Patienten mit Innenohrschwerhörigkeit wurde kürzlich berichtet [12, 24, 25]. Es ist für Innenohrschwerhörige mit Ausfall des cochleären Verstärkers in den äußeren Haarzellen des Innenohrs konzipiert, welches sich durch positives Recruitment und Ausfall der TEOAE (transitory evoked otoacoustic emissions) erkennen läßt. Das Implantat nimmt das Schallsignal mit seinem implantierbaren Mikrophon auf, verstärkt es und setzt es mit seinem piezoelektrischen Wandler in einen mikromechanischen Stimulus für die inneren Haarzellen um, welcher entweder direkt an die Perilymphe oder indirekt über die Gehörknöchelchen zum Innenohr übertragen wird. Das Wandlergehäuse ist aus Reintitan gefertigt (ASTM F67, Grade 2), heliumdicht verschweißt (MIL-STD-883D) und enthält ein schwingfähiges Piezoelement. Der Wandler wird mit einem speziell dafür entwickelten, implantierbaren Mikromanipulator räumlich fest in der Mastoidhöhle verankert [7, 9]. Der Mikromanipulator erlaubt nach seiner Verankerung auf dem Planum mastoideum mittels Titanknochenschrauben die Feinpositionierung der Koppelstange des Wandlers zum gewünschten Zielpunkt von Ossikelkette oder Vestibulum. Um den Stimulus zu übertragen, muß eine zuverlässige Ankopplung des Koppelstangenendes an Kette oder Perilymphe erreicht werden. Dazu dient die direkte Ankopplung der Koppelstange an den Amboßkörper, über die bereits berichtet wurde [8]. Dabei wird das Koppelstangenende in eine mit dem Ulmer Erbium-YAG-Laser nach Pfalz et al. erzeugte Vertiefung in den Amboßkörper eingeführt. Ist der Amboßkörper anatomisch schlecht erreichbar oder liegt ein Kettendefekt vor, dann ist – je nach Situation – eine Ankopplung an den langen Amboßfortsatz, den Stapeskopf oder durch eine Fußplattenperforation an die Perilymphe wünschenswert. Zur Ankopplung am langen Amboßfortsatz oder Steigbügelkopf muß das Koppelstangenende intraoperativ dauerhaft am Zielossikel fixiert werden. Für den langen Amboßfortsatz (Durchmesser ca. 0,8 mm) kommt ein einfaches Aufsetzen der Koppelstange (Durchmesser 0,5 mm) aufgrund der Abrutschgefahr nicht in Frage. Über die mechanische Langzeitstabilität einer möglichen Klebung mit Glasionomerzement bei permanenter vibratorischer Stimulation ist wenig bekannt [13]. In der vorliegenden Arbeit wurden für die Ankopplung an den langen Amboßfortsatz (bei intakter Kette), an das Stapesköpfchen (bei fehlendem Amboß) sowie an die Perilymphe (bei fehlendem Stapesüberbau) geeignete Koppelelemente aus vorhandenen passiven Mittelohrprothesen abgeleitet und im Felsenbein getestet. Im Tiermodell (Foxhound) und beim Menschen dient zum Befestigen am langen Amboßfortsatz eine anformbare Bandschlaufe ähnlich der Öse einer Stapesprothese. Die Ankopplung an den Stapeskopf erfolgt mit einem Goldglöckchen vergleichbar dem einer Bell-Prothese [18]. Die direkte Übertragung an die Perilymphe wird mit Hilfe einer modifizierten Piston-Prothese nach Plester durchgeführt, die durch eine Fußplattenperforation in das Vestibulum eintaucht. Die Koppelelemente werden aus Gold hergestellt und müssen intraoperativ irreversibel mit dem Titan der Wandlerkoppelstange verbunden werden. Technisch geschieht dies mittels speziellen Schweißverfahren, die der Otochirurg intraoperativ naturgemäß nicht verwenden kann. In der vorliegenden Arbeit wurde eine Crimptechnik entwickelt, mit deren Hilfe der Operateur im Mittelohr aufgrund der Kaltflußeigenschaften des Goldes eine Verankerung am Titan der Koppelstange erzeugen kann. Dadurch erreicht er einen irreversiblen Verbund zwischen dem Gold des Koppelelements und dem Titan des Wandlers.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...