GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Oceans Vol. 101, No. C7 ( 1996-07-15), p. 16585-16599
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 101, No. C7 ( 1996-07-15), p. 16585-16599
    Abstract: The annual cycle of the plankton dynamics in the central Black Sea is studied by a one‐dimensional vertically resolved physical‐biological upper ocean model, coupled with the Mellor‐Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in particular, formation of the cold intermediate water mass and yearly evolution of the upper layer stratification, the annual cycle of production with the fall and the spring blooms, and the subsurface phytoplankton maximum layer in summer, as well as realistic patterns of particulate organic carbon and nitrogen. The computed seasonal cycles of the chlorophyll and primary production distributions over the euphotic layer compare reasonably well with the data. Initiation of the spring bloom is shown to be critically dependent on the water column stability. It commences as soon as the convective mixing process weakens and before the seasonal stratification of surface waters begins to develop. It is followed by a weaker phytoplankton production at the time of establishment of the seasonal thermocline in April. While summer nutrient concentrations in the mixed layer are low enough to limit production, the layer between the thermocline and the base of the euphotic zone provides sufficient light and nutrient to support subsurface phytoplankton development. The autumn bloom takes place sometime between October and December depending on environmental conditions. In the case of weaker grazing pressure to control the growth rate, the autumn bloom shifts to December–January and emerges as the winter bloom, or, in some cases, is connected with the spring bloom to form one unified continuous bloom structure during the January–March period. These bloom structures are similar to the year‐to‐year variabilities present in the data.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1988
    In:  Eos, Transactions American Geophysical Union Vol. 69, No. 14 ( 1988-04-05), p. 194-203
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 69, No. 14 ( 1988-04-05), p. 194-203
    Abstract: The Mediterranean as a whole communicates with the Atlantic Ocean through the narrow and shallow Gibraltar Strait. In recent years, scientific interest has been focused on the western Mediterranean and the Strait of Gibraltar through the execution of the Western Mediterranean Circulation Experiment [La Violette, 1987] and the 1985–1986 Gibraltar Experiment [Kinder and Bryden, 1987] . These experiments and other, related investigations, however, do not involve the eastern part from the Strait of Sicily to the easternmost Levantine Basin. The most recent phenomenological materials available about this part of the Mediterranean are the studies by Lacombe and Tchernia [1960, 1972]. More recently, El‐Gindy and El‐Din [1986] produced an analysis of historical oceanographic data available at the Museum National d'Histoire Naturelle in Paris, collected in surveys of the Eastern Mediterranean during 1960—1972. Finally, a general survey of past efforts and investigations has just been written [Malanotte‐Rizzoli and Hecht, 1987].
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1988
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Oceans Vol. 101, No. C12 ( 1996-12-15), p. 28457-28472
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 101, No. C12 ( 1996-12-15), p. 28457-28472
    Abstract: The problem of estimating boundary and initial conditions for a regional open‐ocean model is addressed here. With the objective of mimicking the Synoptic Ocean Prediction (SYNOP) experiment in the Gulf Stream system, a meandering jet is modeled by the fully nonlinear barotropic vorticity equation. Simulated velocity observations are taken using current meters and acoustic tomography; twin experiments are then performed in which the adjoint method is used to reconstruct the flow field. The estimated flow is forced to resemble the true flow by minimizing a cost function with respect to some control variables. First, the vorticity initial conditions are used as control variables, and the boundary conditions are specified. The strong flow is found to induce strong dependence of the model/data misfit upon the specified boundary conditions. Second, the boundary values of stream function and vorticity are then included among the control variables. Various choices of a priori information about the control variables are employed, using various observational strategies. The major new result obtained is the successful estimation of the complete set of initial and boundary conditions, which is necessary to integrate the vorticity equation forward in time. From a time‐invariant first guess for the boundary conditions the assimilation is able to create temporal variations at the boundaries that make the interior flow match well the velocity observations.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C4 ( 1995-04-15), p. 6777-6793
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C4 ( 1995-04-15), p. 6777-6793
    Abstract: A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kaiman filter based on approximations of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time‐invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east‐west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C12 ( 1995-12-15), p. 24773-24796
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C12 ( 1995-12-15), p. 24773-24796
    Abstract: The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3‐month duration by constructing a “synthetic” ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the “global” Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi‐weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique (“nudging”). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high‐quality SYNOP data sets in numerical experiments longer than 1–2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model “on track” over 3‐month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a “gentle” weight must be prescribed to it so as not to overconstrain the model. However, in these assimilations the predicted velocity fields over the SYNOP arrays are greatly in error. The continuous assimilation of the localized SYNOP data sets with a strong weight is necessary to obtain local realistic evolutions. Then assimilation of velocity measurements alone recovers the density structure over the array area. However, the spatial coverage of the SYNOP measurements is too small to constrain the model on the global scale. Thus the blending of both types of datasets is necessary in the assimilation as they constrain different time and space scales. Our choice of “gentle” nudging weight for the global OTIS 3 and “strong” weight for the local SYNOP data provides for realistic simulations of the Gulf Stream system, both globally and locally, on the 3‐ to 4‐month‐long timescale, the one governed by the Gulf Stream jet internal dynamics.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2003
    In:  Global Biogeochemical Cycles Vol. 17, No. 3 ( 2003-09), p. n/a-n/a
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 17, No. 3 ( 2003-09), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0886-6236
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2003
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Journal of Geophysical Research: Oceans Vol. 106, No. C3 ( 2001-03-15), p. 4543-4564
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 106, No. C3 ( 2001-03-15), p. 4543-4564
    Abstract: Recent changes in structure and functioning of the interior Black Sea ecosystem are studied by a series of simulations using a one‐dimensional, vertically resolved, coupled physical‐biochemical model. The simulations are intended to provide a better understanding of how the pelagic food web structure responds to increasing grazing pressure by gelatinous carnivores (medusae Aurelia aurita and ctenophore Mnemiopsis leidyi ) during the past 2 decades. The model is first shown to represent typical eutrophic ecosystem conditions of the late 1970s and early 1980s. This simulation reproduces reasonably well the observed planktonic food web structure at a particular location of the Black Sea for which a year‐long data set is available from 1978. Additional simulations are performed to explore the role of the Mnemiopsis ‐dominated ecosystem in the late 1980s. They are also validated by extended observations from specific years. The results indicate that the population outbreaks of the gelatinous species, either Aurelia or Mnemiopsis , reduce mesozooplankton grazing and lead to increased phytoplankton blooms as observed throughout the 1980s and 1990s in the Black Sea. The peaks of phytoplankton, mesozooplankton, Noctiluca , and gelatinous predator biomass distributions march sequentially as a result of prey‐predator interactions. The late winter diatom bloom and a subsequent increase in mesozooplankton stocks are robust features common to all simulations. The autotrophs and heterotrophs, however, have different responses during the rest of the year, depending on the nature of grazing pressure exerted by the gelatinous predators. In the presence of Mnemiopsis , phytoplankton have additional distinct and pronounced bloom episodes during the spring and summer seasons. These events appear with a 2 month time shift in the ecosystem prior to introduction of Mnemiopsis .
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Annual Reviews ; 2017
    In:  Annual Review of Marine Science Vol. 9, No. 1 ( 2017-01-03), p. 1-29
    In: Annual Review of Marine Science, Annual Reviews, Vol. 9, No. 1 ( 2017-01-03), p. 1-29
    Abstract: Quoting the ancient Romans: Audentes Fortuna iuvat. Being in the right place at the right time is useless if you do not grasp your Fortuna and build upon it. In this article, I expound on the milestones of my multiform research career, which over more than 40 years brought me from Venice to California to MIT; from the Venice problem to highly nonlinear, coherent structures in the ocean and atmosphere; and from the mare nostrum (the Mediterranean Sea), a laboratory for global processes, to the tropical ocean-atmosphere systems and regional coupled climate models of the Maritime Continent. The climate system, with its daunting complexity, is arguably the greatest challenge for, and the future of, the entirety of the earth sciences. Finally, living in and working for Venice has been the privilege and Fortuna of my life.
    Type of Medium: Online Resource
    ISSN: 1941-1405 , 1941-0611
    URL: Issue
    Language: English
    Publisher: Annual Reviews
    Publication Date: 2017
    detail.hit.zdb_id: 2458404-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 1984
    In:  Journal of Physical Oceanography Vol. 14, No. 6 ( 1984-06), p. 1032-1046
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 14, No. 6 ( 1984-06), p. 1032-1046
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1984
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 1998
    In:  Journal of Physical Oceanography Vol. 28, No. 5 ( 1998-05), p. 902-922
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 28, No. 5 ( 1998-05), p. 902-922
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1998
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...