GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Artificial intelligence. ; Internet of things. ; Electronic books.
    Description / Table of Contents: The book discusses the major contributions in the Edge AI domain of IoT systems: heterogeneous micro clusters employed for processing data and for exploiting adopted AI algorithms for the predictive analysis and or prescription.
    Type of Medium: Online Resource
    Pages: 1 online resource (347 pages)
    Edition: 1st ed.
    ISBN: 9781003825142
    Series Statement: Advances in Computational Collective Intelligence Series
    DDC: 006.3
    Language: English
    Note: Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Abbreviations -- Part I Computational Intelligence: Edge AI Services -- Chapter 1 Edge Computational Intelligence: Fundamentals, Trends, and Applications -- 1.1 Introduction -- 1.2 Mainframe-Based Computing Model -- 1.3 PC File Server-Based Computing Model -- 1.4 C/S Architecture-Based Computing Model -- 1.5 Web and B/S Architecture-Based Computing Model -- 1.6 Mobile Devices-Centric Computing Model -- 1.7 Technologies-Based Computing Model -- 1.8 End-Edge-Cloud Computing Model -- 1.9 EC Trends -- 1.9.1 Heterogeneous Computing -- 1.9.2 Edge Intelligence (EI) -- 1.9.3 Edge Cloud Interface -- 1.9.4 5G + Edge Computing -- 1.10 EC Applications in Industry -- 1.10.1 Cloud Service Provider-Based Model -- 1.10.2 Site Facility Edge Service -- 1.10.3 Fixed Operator-Enabled EC Services -- 1.10.4 Mobile Operator-Centric EC Services -- 1.10.5 EC as a Self-Organizing Network -- 1.10.6 Near End Computing Services -- 1.11 Intelligent Edge (IE) and Edge Intelligence (EI) -- 1.11.1 Cost -- 1.11.2 Latency -- 1.11.3 Reliability -- 1.11.4 Privacy -- 1.12 Edge Computing -- 1.13 Edge AI & -- Its Need -- 1.14 Maturation of Neural Networks -- 1.15 Advancements in Computer Infrastructure -- 1.15.1 Use of IoT Devices -- 1.15.2 AI at the Edge: Requirement -- 1.15.3 Benefits of Cloud Computing and Edge Computing -- 1.16 Working of Edge AI -- 1.17 Advantages of Edge AI -- 1.17.1 Intelligence -- 1.17.2 Real-Time -- 1.17.3 Inexpensive -- 1.17.4 Improved Privacy -- 1.17.5 Abundancy -- 1.17.6 Persistency -- 1.17.7 Edge AI Future -- 1.18 Representative Applications of Edge AI -- 1.18.1 Smart Energy Forecasting -- 1.18.2 Predictive Analysis and Maintenance -- 1.18.3 AI-Driven Devices in Healthcare -- 1.18.4 Intelligent Virtual Assistants. , 1.18.5 Cloudlet and Micro-Data Centers -- 1.19 Fog Computing -- 1.20 Mobile Edge Computing -- 1.21 EC Terminologies -- 1.22 End-Edge-Cloud Computing -- 1.23 Hardware for EC -- 1.24 AI Hardware for EC -- 1.24.1 GPU-Enabled Hardware -- 1.24.2 Field Programmable Gate Array (FPGA)-Enabled Hardware [33, 34] -- 1.24.3 Integrated Circuit (ASIC)-Based Hardware -- 1.24.4 Potential of Integrated Commodities for Edge Nodes -- 1.25 EC Frameworks -- 1.25.1 Design Goals -- 1.25.2 End Users -- 1.25.3 Up-Scaling -- 1.25.4 System Characteristics -- 1.25.5 Application Environments -- 1.26 Edge Virtualization -- 1.26.1 Virtualization Strategies -- 1.26.2 Virtualizing Network -- 1.26.3 Network Slicing -- 1.26.4 Value Scenarios (VS) -- 1.26.5 Smart Parks -- 1.27 Video Surveillance -- 1.28 Industrial Internet of Things (IIoT) -- 1.29 Conclusion -- References -- Chapter 2 Securing IoT Services Using Artificial Intelligence in Edge Computing -- 2.1 Introduction -- 2.2 Conception and Depictions -- 2.2.1 IoT Service -- 2.2.2 Edge Computing -- 2.3 Framework of IoT Service With EC -- 2.3.1 Layer of Device -- 2.3.2 Layer of Network -- 2.3.3 Layer of Edge -- 2.3.4 Layer of Cloud -- 2.4 Privacy Maintenance With AI for Edge-Enabled IoT Services -- 2.4.1 Traditional Encryption Methods -- 2.4.1.1 Anonymization -- 2.4.1.2 Cryptographic Method -- 2.4.1.3 Data Obfuscation -- 2.4.2 AI-Based Privacy-Preserving Methods in ENs -- 2.4.2.1 CNN-Based Privacy Preservation -- 2.4.2.2 Privacy Preservation Using DNNs -- 2.5 Edge-Enabled IoT Services With AI and Blockchain -- 2.5.1 Blockchain for IoT Services' Security -- 2.5.1.1 Authentication Management and Access Control -- 2.5.1.2 Reliability and Confidentiality of Data -- 2.5.2 Blockchain for Edge-Enabled IoT Data Sharing -- 2.5.3 Blockchain for Edge-Enabled IoT Services' Efficiency -- 2.6 Challenges and Issues. , 2.6.1 Schemes Based On ML Security -- 2.6.2 Adopt ML in Blockchain Technology -- 2.7 Conclusions -- References -- Chapter 3 Computational-Based Edge AI Services and Challenges -- 3.1 Introduction -- 3.2 Background -- 3.3 Edge AI Services -- 3.3.1 Edge AI Services in Healthcare -- 3.3.2 Edge AI in Retail Industry -- 3.3.3 Role of Edge AI in Manufacturing Industry -- 3.3.4 Role of Edge AI in Transportation and Traffic Management -- 3.4 Edge Computing and AI Algorithms -- 3.4.1 Traditional Machine Learning -- 3.4.2 Deep Learning Algorithms -- 3.4.3 Reinforcement and Deep Reinforcement Learning -- 3.4.4 Evolutionary Algorithms -- 3.5 Challenges in Implementing Edge AI -- 3.6 Conclusion -- References -- Part II Computational Intelligence: Edge AI Security and Privacy -- Chapter 4 Security and Privacy in Edge AI: Challenges and Concerns -- 4.1 Introduction -- 4.1.1 IoT Service -- 4.1.2 IoT Architecture -- 4.1.2.1 Components of IoT Architecture -- 4.1.2.2 Layers of IoT Architecture -- 4.1.2.3 IoT Services -- 4.2 Edge Computing (EC) -- 4.3 EC in Consonance With IoT Devices -- 4.4 Edge AI -- 4.4.1 Definition -- 4.4.2 Traditional Intelligence Vs. Edge Intelligence -- 4.4.3 Need of Edge AI -- 4.4.4 Reasons for Deploying AI at the Edge -- 4.4.5 Pros of Edge AI -- 4.4.6 Working of Edge AI Technology -- 4.5 Edge AI Compared to Edge Computing -- 4.6 Security and Privacy Concerns for Edge AI -- 4.6.1 AI and Edge Computing Security -- 4.6.2 Integration of Edge Computing With AI -- 4.6.3 Security Risks of Edge Computing -- 4.6.3.1 Security in Edge Computing -- 4.6.3.2 Advantages of Security in Edge Computing -- 4.6.3.3 Security Strategies for Edge Computing -- 4.6.3.4 Edge Security Best Practices -- 4.6.3.5 Edge Security Vendors and Products -- 4.7 IoT Service Architecture With Edge Computing -- 4.7.1 Device Layer -- 4.7.2 Network Layer -- 4.7.3 Edge Layer. , 4.7.4 Cloud Layer -- 4.8 AI-Assisted Privacy Preservation for Edge-Enabled IoT Services -- 4.8.1 Traditional Encryption Methods -- 4.8.1.1 Anonymization -- 4.8.1.2 Cryptographic Method -- 4.8.1.3 Data Obfuscation -- 4.8.2 ENs With Lightweight AI Privacy-Preserving Methods -- 4.8.2.1 Role of CNNs in Privacy Preservation -- 4.8.2.2 Role of DNNs in Privacy Preservation -- 4.9 Edge-Enabled IoT Services By AI-Powered Blockchain -- 4.9.1 Role of Blockchain for Maintaining the Security of IoT Services -- 4.9.1.1 Access Control and Authentication Management -- 4.9.1.2 Confidentiality and Reliability of Data -- 4.9.2 Blockchain's Role in Edge-Enabled IoT Data Sharing -- 4.9.3 Enhancing Efficiency of Edge-Enabled IoT Services With Blockchain -- 4.10 Challenges and Concerns -- 4.10.1 Security Schemes Based On ML -- 4.10.1.1 High Cost of Communication and Computation -- 4.10.1.2 Security Techniques for Backup -- 4.10.2 Integration of ML and Blockchain Technology -- 4.11 Conclusion -- References -- Chapter 5 A Study of an Edge Computing-Enabled Metaverse Ecosystem -- 5.1 Introduction -- 5.1.1 Metaverse -- 5.1.2 Edge Computing -- 5.1.3 Edge Computing and Metaverse -- 5.1.3 Metaverse and Traditional Cloud-Based Platform -- 5.1.4 Edge Computing in the Metaverse -- 5.1.5 Use of Edge Computing By Prominent Leaders in Gaming Market -- 5.2 Relevance -- 5.3 Architectural Framework of an Edge Computing-Enabled -- 5.4 Edge Computing Case Studies in the Metaverse -- 5.5 Challenges for Edge Computing-Enabled Metaverse -- 5.5.1 Synchronization Challenges -- 5.5.2 Load Balancing -- 5.5.3 Network Complexities -- 5.5.4 Data Privacy and Security -- 5.5.5 Interoperability -- 5.5.6 Resource Constraints -- 5.5.7 Scalability -- 5.6 Conclusion -- References -- Chapter 6 Sustainable Communication-Efficient Edge AI: Algorithms and Systems -- 6.1 Introduction -- 6.1.1 Edge Devices. , 6.1.2 Cloud Computing -- 6.1.3 Challenges to Cloud Computing -- 6.1.4 Challenges Before Cloud Computing for Building Edge Computing -- 6.1.5 Edge Computing -- 6.1.6 Artificial Intelligence -- 6.1.7 Edge Computing With AI -- 6.1.8 Edge AI -- 6.2.1 Need of Edge AI -- 6.2.2 Advantages of Edge AI -- 6.2.3 How Does Edge AI Technology Work? -- 6.2.4 Edge AI Architecture -- 6.3 Communication-Efficient Edge AI: Algorithms and Systems -- 6.3.1 Communications-Efficient Algorithms for Edge AI -- 6.3.1.1 Federated Learning -- 6.3.1.2 Centralized Federated Learning -- 6.3.1.3 Centralized Federated Learning Design -- 6.4 Centralized Federated Learning Pseudo Code -- 6.4.1 Decentralized Federated Learning -- 6.4.2 Heterogeneous Dederated Learning -- 6.4.3 Quantization -- 6.4.4 Pruning -- 6.4.4.1 Design of Pruning -- 6.4.4.2 Pruning Techniques -- 6.4.4.5 Edge Intelligence Network -- 6.4.4.5 Edge-To-Edge Communication -- References -- Part III Computational Intelligence: Edge Computing and AI Applications -- Chapter 7 Machine Learning-Based Hybrid Technique for Securing Edge Computing -- 7.1 Introduction -- 7.2 Literature Review -- 7.2.1 Static Analysis Based On Malware Detection -- 7.2.2 Dynamic Analysis Based On Malware Detection -- 7.2.3 Hybrid Malware Analysis Techniques -- 7.3 Proposed Hybrid Malware Analysis -- 7.3.1 HybriDroid Architecture -- 7.3.2 Classifier Training for HybriDroid and CHybriDroid -- 7.4 Experimental Results -- 7.4.1 Data Set -- 7.4.2 Feature Selection -- 7.4.3 Feature Ranking -- 7.4.4 Result Discussion -- 7.4.5 Prediction Model Overhead -- 7.4.6 Analysis -- 7.5 Conclusion and Future Work -- References -- Chapter 8 A Study of Secure Deployment of Mobile Services in Edge Computing -- 8.1 Introduction -- 8.1.1 MEC Service Deployment -- 8.1.2 Computation Offloading -- 8.1.3 Data Placement -- 8.2 Basic Concepts and Definitions. , 8.2.1 Service Deployment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    La Vergne :Royal Society of Chemistry, The,
    Keywords: Electronic books.
    Description / Table of Contents: This edited volume reports the latest developments in practical and selective reactions and methods involving carbenes and nitrenes and provides details of the structural diversity of heterocycles.
    Type of Medium: Online Resource
    Pages: 1 online resource (415 pages)
    Edition: 1st ed.
    ISBN: 9781837674855
    DDC: 547.59
    Language: English
    Note: Cover -- Synthesis, Properties, and Biological Applications of  1,3-Thiazoles -- 1.1 Introduction -- 1.2 Recent Advances in the Synthesis of Thiazole -- 1.3 Biological Applications -- 1.3.1 Thiazole as an Anticancer Agent -- 1.3.2 Thiazole as an Antioxidant Agent -- 1.3.3 Thiazole as an Antitubercular Agent -- 1.3.4 Thiazole as an Antimicrobial Agent -- 1.4 Conclusion -- Abbreviations -- References -- Synthesis, Properties, and Therapeutic Applications of Dithiazoles -- 2.1 Introduction -- 2.2 Synthesis and Chemistry -- 2.2.1 Reaction at the More Reactive C-5 Position of Appel's Salt -- 2.2.2  Reaction at the Less Reactive C-4 Position of Appel's Salt -- 2.2.3 Synthesis of Fused Dithiazoles -- 2.3 Biological Activity of 1,2,3-Dithiazoles -- 2.3.1 Antimicrobial Activities of 1,2,3-Dithiazoles -- 2.3.2 Antiviral Activities of 1,2,3-Dithiazoles -- 2.3.3 Anticancer Activities of 1,2,3-Dithiazoles -- 2.3.4 Other Biological Activities -- 2.4 Conclusion -- References -- Isothiazoles: Synthetic Strategies and Pharmacological Applications -- 3.1 Introduction -- 3.2 Recent Advances in the Synthesis of Isothiazoles -- 3.3 Biological Applications -- 3.3.1 Isothiazole as the Anticancer Agent -- 3.3.2 Isothiazole as the Antidiabetic Agent -- 3.3.3 Isothiazole as an Antiviral Agent -- 3.3.4 Isothiazole with Neurological Activity -- 3.3.5 Isothiazole as Antimicrobial/Antibacterial/Antifungal Agents -- 3.3.6 Isothiazole as Fungicides/Pesticides/Plant Protectors -- 3.4 Conclusion -- Abbreviations -- References -- Synthesis, Properties, and Biological Applications of Benzothiazoles -- 4.1 Introduction -- 4.2 Synthesis of Benzothiazoles and Their Derivatives -- 4.2.1 Synthesis from Isothiocyanates -- 4.2.2 Synthesis from Triethyl Orthoformate -- 4.2.3 Synthesis from Aniline Derivatives -- 4.2.4 Synthesis from Hydrazine. , 4.2.5 Intramolecular Formation of C-S Using Pd and Cu Catalysts -- 4.2.6 Solvent-free Synthesis -- 4.2.7 Cyclization -- 4.2.8 One-pot Synthesis of 2-Aminobenzothiazoles -- 4.2.9 Synthesis by Suzuki-Miyaura -- 4.2.10 Fused Benzothiazole Synthesis -- 4.3 Physicochemical Properties of Benzothiazoles -- 4.4 Biological Activities of Benzothiazoles -- 4.4.1 Antimicrobial Activity -- 4.4.2 Anticancer Activity -- 4.4.3 Anti-inflammatory Effects -- 4.4.4 Antiviral Activity -- 4.4.5 Antidiabetic Activity -- 4.4.6 Antioxidant Activity -- 4.4.7 Antitubercular Activity -- 4.5 Emerging Trends and Future Prospects -- 4.6 Conclusion -- Synthesis, Properties, and Biological Applications of 2,4-Thiazolidinediones -- 5.1 Introduction -- 5.1.1 Importance of 2,4-Thiazolidinedione Analogues in Medicinal Chemistry -- 5.2 Recent Advances in Synthesis -- 5.3 Medicinal Chemistry Applications -- 5.3.1 Antidiabetic Effects -- 5.3.2 Anticancer Effects -- 5.3.3 Anti-inflammatory Effects -- 5.3.4 Antioxidant Effects -- 5.4 TZDs and Their Side Effects -- 5.5 Conclusion -- Abbreviations -- References -- Synthesis, Properties, and Biological Applications of  1,2,4-Thiadiazoles -- 6.1 Introduction -- 6.2 Recent Advances in the Synthesis of 1,2,4-Thiadiazoles -- 6.3 Biological Applications -- 6.3.1 Anticonvulsant Activity -- 6.3.2 Anticancer Activity -- 6.3.3 Central Nervous System Activity -- 6.3.4 Cathepsin B Inhibitor -- 6.3.5 Anticholinesterase Activity and Antioxidant Properties -- 6.3.6 Alzheimer's Disease -- 6.3.7 Anticonvulsant Activity -- 6.3.8 Plant Growth Regulator Herbicide -- 6.4 Conclusion -- Abbreviations -- Acknowledgements -- References -- Synthesis, Properties, and Biological Applications of 1,3,4-Thiadiazoles -- 7.1 Introduction -- 7.1.1 Isomers of Thiadiazoles -- 7.1.2 Chemical Properties and Characteristics of 1,3,4-Thiadiazoles. , 7.2 Synthesis of 1,3,4-Thiadiazoles -- 7.2.1 Conventional Methods for the Synthesis of 1,3,4-Thiadiazoles -- 7.2.2 Green Methods for the Synthesis of 1,3,4-Thiadiazoles -- 7.3 Applications of 1,3,4-Thiadiazoles in Currently Marketed Drugs/Investigational Compounds -- 7.4 Biological Activities of 1,3,4-Thiadiazoles -- 7.4.1 Anti-inflammatory Agents -- 7.4.2 Anti-diabetic Agents -- 7.4.3 Anti-seizure/Anti-epileptic/Anti-convulsant Agents -- 7.4.4 Anti-cancer Agents -- 7.4.5 Anti-Alzheimer Agents -- 7.4.6 Anti-viral Agents -- 7.4.7 Anti-tuberculosis Agents -- 7.4.8 Antimicrobial Agents -- 7.4.9 Diuretic Agents -- 7.4.10 Anti-obesity Agents -- 7.4.11 Anti-glaucoma Agents -- 7.4.12 Anti-platelet Agents -- 7.4.13 Anti-aging Agents -- 7.4.14 Anti-leishmanicidal Agents -- 7.4.15 Anti-H. pylori Agents -- 7.4.16 Anti-fungal Agents -- 7.5 Patent Updates on 1,3,4-Thiadiazoles -- 7.6 Ongoing Clinical Trials -- Synthesis, Properties, and Biological Applications of Thiopyrans -- 8.1 Introduction -- 8.2 Developments in the Synthesis of Thiopyran Derivatives -- 8.2.1 Synthesis of Thiopyran Derivatives Using Glutaraldehyde Derivatives -- 8.2.2 Synthesis of Thiopyrans from Thioenolates -- 8.2.3 Synthesis of Thiopyrans from Thioamides -- 8.2.4 Hantzsch-like Synthesis of 4H-thiopyrans -- 8.2.5 Synthesis of Thiopyrans from Acetylenes -- 8.2.6 Synthesis of Thiopyrans from Enamines -- 8.2.7 Synthesis of Thiopyrans from Thiopyrylium Salts -- 8.2.8 Synthesis of Thiopyrans by Reduction -- 8.2.9 Synthesis of Thiopyrans by Reactions with C-nucleophiles and Reductive C-substitutions -- 8.2.10 Reactions with Oxygen and Sulfur Nucleophiles -- 8.2.11 Synthesis of Thiopyrans by Reactions with Nitrogen and Phosphorus Nucleophiles -- 8.2.12 Synthesis of Thiopyrans from Thiopyrones and Similar Cyclic Ketones -- 8.2.13 Synthesis of Thiopyrans from Thiophenes. , 8.2.14 Synthesis of Thiopyrans from 1,5-Diketones -- 8.2.15 Synthesis of Thiopyrans by Electrosynthesis and with Catalysts -- 8.2.16 Synthesis of Thiopyrans from β-Keto Esters -- 8.2.17 Synthesis of Thiopyrans from N-methylisatin -- 8.2.18 Synthesis of Thiopyrans by Intramolecular Coupling -- 8.3 Pharmacological Profile of Thiopyran Derivatives -- 8.3.1 Antibacterial and Antifungal Activities -- 8.3.2 Anticancer Activity -- 8.3.3 Antiviral Activity -- 8.3.4 VEGFR-2 Inhibitory Activity -- 8.3.5 5-LOX Inhibitory Activity -- 8.3.6 Larvicidal Activity -- 8.3.7 Nematicidal Activity -- 8.3.8 Anti-inflammatory Activity -- 8.3.9 Hypoglycemic Activity -- 8.4 Conclusion -- Recent Developments in the Synthesis and Biological Applications of Thiazine -- 9.1 Introduction -- 9.2 Recent Advances in the Synthesis of Thiazine -- 9.3 Biological Applications -- 9.3.1 Thiazine as Anticancer Agents -- 9.3.2 Thiazine as Antimicrobial Agents -- 9.3.3 Thiazine as Antitubercular Agents -- 9.3.4 Thiazine as Anticonvulsant Agents -- 9.3.5 Thiazine as Antihypertensive Agents -- 9.3.6 Thiazine as Miscellaneous Agents -- 9.4 Conclusions -- Synthesis, Properties, and Biological Applications of Benzothiazepines -- 10.1 Introduction -- 10.2 Synthetic Approaches for Benzothiazepine -- 10.3 Synthesis of 1,4-Benzothiazepine -- 10.3.1 Synthesis of 4,1-Benzothiazepine-4-oxide 10.3.29 -- 10.3.2 Synthesis of 4,1-Benzothiazepine-4,4-dioxide 10.3.30 -- 10.3.3 Synthesis of 1,5-Dihydro-4,1-benzothiazepine Derivatives 10.3.31 -- 10.3.4 Reaction Mechanism -- 10.3.5 Synthesis of 2,3,4,5-Tetrahydrobenzo[1,4]thiazepines via N-Acyliminium Cyclization36 -- 10.3.6 Synthesis of Phosphonomethylbenzothiazepine29 -- 10.3.7 Asymmetric Reduction of 10.3.45 and Conversion into ASBT Inhibitor 10.3.48 -- 10.3.8 Synthesis of 1,4-Benzothiazepines from Cyclic Sulfenamides37. , 10.3.9 Synthesis of 1,4-Benzothiazepine using Cysteine38 -- 10.3.10 Synthesis of Bicyclic 1,4-Benzothiazepines39 -- 10.4 Biological Behavior of 1,4-Benzothiazepines -- 10.4.1 Anti-tumor potential -- 10.4.2 Anti-malarial potential -- 10.4.3 Anti-bacterial potential -- 10.4.4 Anti-fungal potential -- 10.4.5 Anti-diabetic Potential -- 10.4.6 Antioxidant Potential -- 10.4.7 Analgesic and Anti-inflammatory Potential -- 10.4.8 Anti-convulsant Potential -- 10.4.9 Other Biological Potentials -- 10.5 Structure-Activity Relationship Study -- 10.6 Conclusion -- Synthesis, Properties, and Biological Applications of Thiophene -- 11.1 Introduction -- 11.2 Recent Developments in the Synthesis of Thiophene Derivatives -- 11.2.1 Synthesis of Thiophene Derivatives Through Metal-catalyzed Reaction -- 11.2.2 Synthesis of Thiophene Derivatives Through Iodocyclization Reaction -- 11.2.3 Synthesis of Thiophene Derivatives Through Metal-free Approaches -- 11.2.4 Synthesis of Thiophene Derivatives Through Multicomponent Reaction Approaches -- 11.3 Recent Advances in Biological Applications of Thiophene Derivatives -- 11.3.1 Antimicrobial Activity of Thiophene Derivatives -- 11.3.2 Antileishmanial Activity of Thiophene Derivatives -- 11.3.3 Antiviral Activity of Thiophene Derivatives -- 11.3.4 Anticancer Activity of Thiophene Derivatives -- 11.3.5 Anti-inflammatory Activity of Thiophene Derivatives -- 11.3.6 Anticonvulsant and Antiurease Activity of Thiophene Derivatives -- 11.3.7 Antioxidant, Enzyme Inhibition, and Antithrombotic Activity of Thiophene Derivatives -- Synthesis, Properties, and Biological Applications of Benzothiophene -- 12.1 Introduction -- 12.1.1 Physical Properties -- 12.2 Recent Synthesis -- 12.2.1 Cyclization Reactions by Lewis Acid -- 12.2.2 Cyclization Reactions by Halogen Catalysis -- 12.2.3 Cyclization Reactions by Transition Metal Catalysis. , 12.2.4 Cyclization Reactions by Base Catalysis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...