Keywords:
Electronic books.
Description / Table of Contents:
This edited volume reports the latest developments in practical and selective reactions and methods involving carbenes and nitrenes and provides details of the structural diversity of heterocycles.
Type of Medium:
Online Resource
Pages:
1 online resource (415 pages)
Edition:
1st ed.
ISBN:
9781837674855
URL:
https://ebookcentral.proquest.com/lib/geomar/detail.action?docID=31227484
DDC:
547.59
Language:
English
Note:
Cover -- Synthesis, Properties, and Biological Applications of 1,3-Thiazoles -- 1.1 Introduction -- 1.2 Recent Advances in the Synthesis of Thiazole -- 1.3 Biological Applications -- 1.3.1 Thiazole as an Anticancer Agent -- 1.3.2 Thiazole as an Antioxidant Agent -- 1.3.3 Thiazole as an Antitubercular Agent -- 1.3.4 Thiazole as an Antimicrobial Agent -- 1.4 Conclusion -- Abbreviations -- References -- Synthesis, Properties, and Therapeutic Applications of Dithiazoles -- 2.1 Introduction -- 2.2 Synthesis and Chemistry -- 2.2.1 Reaction at the More Reactive C-5 Position of Appel's Salt -- 2.2.2 Reaction at the Less Reactive C-4 Position of Appel's Salt -- 2.2.3 Synthesis of Fused Dithiazoles -- 2.3 Biological Activity of 1,2,3-Dithiazoles -- 2.3.1 Antimicrobial Activities of 1,2,3-Dithiazoles -- 2.3.2 Antiviral Activities of 1,2,3-Dithiazoles -- 2.3.3 Anticancer Activities of 1,2,3-Dithiazoles -- 2.3.4 Other Biological Activities -- 2.4 Conclusion -- References -- Isothiazoles: Synthetic Strategies and Pharmacological Applications -- 3.1 Introduction -- 3.2 Recent Advances in the Synthesis of Isothiazoles -- 3.3 Biological Applications -- 3.3.1 Isothiazole as the Anticancer Agent -- 3.3.2 Isothiazole as the Antidiabetic Agent -- 3.3.3 Isothiazole as an Antiviral Agent -- 3.3.4 Isothiazole with Neurological Activity -- 3.3.5 Isothiazole as Antimicrobial/Antibacterial/Antifungal Agents -- 3.3.6 Isothiazole as Fungicides/Pesticides/Plant Protectors -- 3.4 Conclusion -- Abbreviations -- References -- Synthesis, Properties, and Biological Applications of Benzothiazoles -- 4.1 Introduction -- 4.2 Synthesis of Benzothiazoles and Their Derivatives -- 4.2.1 Synthesis from Isothiocyanates -- 4.2.2 Synthesis from Triethyl Orthoformate -- 4.2.3 Synthesis from Aniline Derivatives -- 4.2.4 Synthesis from Hydrazine.
,
4.2.5 Intramolecular Formation of C-S Using Pd and Cu Catalysts -- 4.2.6 Solvent-free Synthesis -- 4.2.7 Cyclization -- 4.2.8 One-pot Synthesis of 2-Aminobenzothiazoles -- 4.2.9 Synthesis by Suzuki-Miyaura -- 4.2.10 Fused Benzothiazole Synthesis -- 4.3 Physicochemical Properties of Benzothiazoles -- 4.4 Biological Activities of Benzothiazoles -- 4.4.1 Antimicrobial Activity -- 4.4.2 Anticancer Activity -- 4.4.3 Anti-inflammatory Effects -- 4.4.4 Antiviral Activity -- 4.4.5 Antidiabetic Activity -- 4.4.6 Antioxidant Activity -- 4.4.7 Antitubercular Activity -- 4.5 Emerging Trends and Future Prospects -- 4.6 Conclusion -- Synthesis, Properties, and Biological Applications of 2,4-Thiazolidinediones -- 5.1 Introduction -- 5.1.1 Importance of 2,4-Thiazolidinedione Analogues in Medicinal Chemistry -- 5.2 Recent Advances in Synthesis -- 5.3 Medicinal Chemistry Applications -- 5.3.1 Antidiabetic Effects -- 5.3.2 Anticancer Effects -- 5.3.3 Anti-inflammatory Effects -- 5.3.4 Antioxidant Effects -- 5.4 TZDs and Their Side Effects -- 5.5 Conclusion -- Abbreviations -- References -- Synthesis, Properties, and Biological Applications of 1,2,4-Thiadiazoles -- 6.1 Introduction -- 6.2 Recent Advances in the Synthesis of 1,2,4-Thiadiazoles -- 6.3 Biological Applications -- 6.3.1 Anticonvulsant Activity -- 6.3.2 Anticancer Activity -- 6.3.3 Central Nervous System Activity -- 6.3.4 Cathepsin B Inhibitor -- 6.3.5 Anticholinesterase Activity and Antioxidant Properties -- 6.3.6 Alzheimer's Disease -- 6.3.7 Anticonvulsant Activity -- 6.3.8 Plant Growth Regulator Herbicide -- 6.4 Conclusion -- Abbreviations -- Acknowledgements -- References -- Synthesis, Properties, and Biological Applications of 1,3,4-Thiadiazoles -- 7.1 Introduction -- 7.1.1 Isomers of Thiadiazoles -- 7.1.2 Chemical Properties and Characteristics of 1,3,4-Thiadiazoles.
,
7.2 Synthesis of 1,3,4-Thiadiazoles -- 7.2.1 Conventional Methods for the Synthesis of 1,3,4-Thiadiazoles -- 7.2.2 Green Methods for the Synthesis of 1,3,4-Thiadiazoles -- 7.3 Applications of 1,3,4-Thiadiazoles in Currently Marketed Drugs/Investigational Compounds -- 7.4 Biological Activities of 1,3,4-Thiadiazoles -- 7.4.1 Anti-inflammatory Agents -- 7.4.2 Anti-diabetic Agents -- 7.4.3 Anti-seizure/Anti-epileptic/Anti-convulsant Agents -- 7.4.4 Anti-cancer Agents -- 7.4.5 Anti-Alzheimer Agents -- 7.4.6 Anti-viral Agents -- 7.4.7 Anti-tuberculosis Agents -- 7.4.8 Antimicrobial Agents -- 7.4.9 Diuretic Agents -- 7.4.10 Anti-obesity Agents -- 7.4.11 Anti-glaucoma Agents -- 7.4.12 Anti-platelet Agents -- 7.4.13 Anti-aging Agents -- 7.4.14 Anti-leishmanicidal Agents -- 7.4.15 Anti-H. pylori Agents -- 7.4.16 Anti-fungal Agents -- 7.5 Patent Updates on 1,3,4-Thiadiazoles -- 7.6 Ongoing Clinical Trials -- Synthesis, Properties, and Biological Applications of Thiopyrans -- 8.1 Introduction -- 8.2 Developments in the Synthesis of Thiopyran Derivatives -- 8.2.1 Synthesis of Thiopyran Derivatives Using Glutaraldehyde Derivatives -- 8.2.2 Synthesis of Thiopyrans from Thioenolates -- 8.2.3 Synthesis of Thiopyrans from Thioamides -- 8.2.4 Hantzsch-like Synthesis of 4H-thiopyrans -- 8.2.5 Synthesis of Thiopyrans from Acetylenes -- 8.2.6 Synthesis of Thiopyrans from Enamines -- 8.2.7 Synthesis of Thiopyrans from Thiopyrylium Salts -- 8.2.8 Synthesis of Thiopyrans by Reduction -- 8.2.9 Synthesis of Thiopyrans by Reactions with C-nucleophiles and Reductive C-substitutions -- 8.2.10 Reactions with Oxygen and Sulfur Nucleophiles -- 8.2.11 Synthesis of Thiopyrans by Reactions with Nitrogen and Phosphorus Nucleophiles -- 8.2.12 Synthesis of Thiopyrans from Thiopyrones and Similar Cyclic Ketones -- 8.2.13 Synthesis of Thiopyrans from Thiophenes.
,
8.2.14 Synthesis of Thiopyrans from 1,5-Diketones -- 8.2.15 Synthesis of Thiopyrans by Electrosynthesis and with Catalysts -- 8.2.16 Synthesis of Thiopyrans from β-Keto Esters -- 8.2.17 Synthesis of Thiopyrans from N-methylisatin -- 8.2.18 Synthesis of Thiopyrans by Intramolecular Coupling -- 8.3 Pharmacological Profile of Thiopyran Derivatives -- 8.3.1 Antibacterial and Antifungal Activities -- 8.3.2 Anticancer Activity -- 8.3.3 Antiviral Activity -- 8.3.4 VEGFR-2 Inhibitory Activity -- 8.3.5 5-LOX Inhibitory Activity -- 8.3.6 Larvicidal Activity -- 8.3.7 Nematicidal Activity -- 8.3.8 Anti-inflammatory Activity -- 8.3.9 Hypoglycemic Activity -- 8.4 Conclusion -- Recent Developments in the Synthesis and Biological Applications of Thiazine -- 9.1 Introduction -- 9.2 Recent Advances in the Synthesis of Thiazine -- 9.3 Biological Applications -- 9.3.1 Thiazine as Anticancer Agents -- 9.3.2 Thiazine as Antimicrobial Agents -- 9.3.3 Thiazine as Antitubercular Agents -- 9.3.4 Thiazine as Anticonvulsant Agents -- 9.3.5 Thiazine as Antihypertensive Agents -- 9.3.6 Thiazine as Miscellaneous Agents -- 9.4 Conclusions -- Synthesis, Properties, and Biological Applications of Benzothiazepines -- 10.1 Introduction -- 10.2 Synthetic Approaches for Benzothiazepine -- 10.3 Synthesis of 1,4-Benzothiazepine -- 10.3.1 Synthesis of 4,1-Benzothiazepine-4-oxide 10.3.29 -- 10.3.2 Synthesis of 4,1-Benzothiazepine-4,4-dioxide 10.3.30 -- 10.3.3 Synthesis of 1,5-Dihydro-4,1-benzothiazepine Derivatives 10.3.31 -- 10.3.4 Reaction Mechanism -- 10.3.5 Synthesis of 2,3,4,5-Tetrahydrobenzo[1,4]thiazepines via N-Acyliminium Cyclization36 -- 10.3.6 Synthesis of Phosphonomethylbenzothiazepine29 -- 10.3.7 Asymmetric Reduction of 10.3.45 and Conversion into ASBT Inhibitor 10.3.48 -- 10.3.8 Synthesis of 1,4-Benzothiazepines from Cyclic Sulfenamides37.
,
10.3.9 Synthesis of 1,4-Benzothiazepine using Cysteine38 -- 10.3.10 Synthesis of Bicyclic 1,4-Benzothiazepines39 -- 10.4 Biological Behavior of 1,4-Benzothiazepines -- 10.4.1 Anti-tumor potential -- 10.4.2 Anti-malarial potential -- 10.4.3 Anti-bacterial potential -- 10.4.4 Anti-fungal potential -- 10.4.5 Anti-diabetic Potential -- 10.4.6 Antioxidant Potential -- 10.4.7 Analgesic and Anti-inflammatory Potential -- 10.4.8 Anti-convulsant Potential -- 10.4.9 Other Biological Potentials -- 10.5 Structure-Activity Relationship Study -- 10.6 Conclusion -- Synthesis, Properties, and Biological Applications of Thiophene -- 11.1 Introduction -- 11.2 Recent Developments in the Synthesis of Thiophene Derivatives -- 11.2.1 Synthesis of Thiophene Derivatives Through Metal-catalyzed Reaction -- 11.2.2 Synthesis of Thiophene Derivatives Through Iodocyclization Reaction -- 11.2.3 Synthesis of Thiophene Derivatives Through Metal-free Approaches -- 11.2.4 Synthesis of Thiophene Derivatives Through Multicomponent Reaction Approaches -- 11.3 Recent Advances in Biological Applications of Thiophene Derivatives -- 11.3.1 Antimicrobial Activity of Thiophene Derivatives -- 11.3.2 Antileishmanial Activity of Thiophene Derivatives -- 11.3.3 Antiviral Activity of Thiophene Derivatives -- 11.3.4 Anticancer Activity of Thiophene Derivatives -- 11.3.5 Anti-inflammatory Activity of Thiophene Derivatives -- 11.3.6 Anticonvulsant and Antiurease Activity of Thiophene Derivatives -- 11.3.7 Antioxidant, Enzyme Inhibition, and Antithrombotic Activity of Thiophene Derivatives -- Synthesis, Properties, and Biological Applications of Benzothiophene -- 12.1 Introduction -- 12.1.1 Physical Properties -- 12.2 Recent Synthesis -- 12.2.1 Cyclization Reactions by Lewis Acid -- 12.2.2 Cyclization Reactions by Halogen Catalysis -- 12.2.3 Cyclization Reactions by Transition Metal Catalysis.
,
12.2.4 Cyclization Reactions by Base Catalysis.
Permalink