GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 11
    facet.materialart.
    Unbekannt
    In:  [Talk] In: Ocean Sciences Meeting 2012 , 20.02.-24.02.2012, Salt Lake City, USA .
    Publikationsdatum: 2012-06-13
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    facet.materialart.
    Unbekannt
    In:  [Talk] In: DRAKKAR/MYOCEAN 2012 Annual Workshop, 30.01.-01.02.2012, Grenoble, France .
    Publikationsdatum: 2012-06-13
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    In:  [Poster] In: EGU General Assembly 2011, 03.-08.04.2011, Vienna, Austria .
    Publikationsdatum: 2012-06-12
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    facet.materialart.
    Unbekannt
    In:  [Poster] In: WCRP (World Climate Research Programme), 24.11.2011, Denver, CO, USA .
    Publikationsdatum: 2012-06-12
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    In:  [Poster] In: EGU General Assembly 2011, 03.-08.04.2011, Vienna, Austria .
    Publikationsdatum: 2012-06-12
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    facet.materialart.
    Unbekannt
    In:  [Poster] In: Open Sciences Meeting 2016, 21.-26.02.2016, New Orleans, USA .
    Publikationsdatum: 2016-11-17
    Beschreibung: The spatial and temporal variability of Antarctic Intermediate Water (AAIW) formation rates during 1948-2007 is investigated in a set of high-resolution experiments performed with the NEMO-LIM ocean sea-ice model. Two sets of experiments are analyzed: one having a global 1/4° horizontal resolution (ORCA025) and another having a resolution of 1/12° in the Southern Ocean, achieved using a two-way nesting technique. The hindcast experiments are forced with the CORE-II atmospheric reanalysis from 1948-2007, with companion climatological experiments used to correct for model spurious trends. The spatial distribution of AAIW formation rates is explored via available AAIW volume and via kinematic subduction rates. Maximum AAIW formation rates are found in the regions where the mixed layer depth (MLD) is deepest in winter, i.e. in the southeast Pacific and along the Antarctic Circumpolar Current fronts, whereas kinematic subduction rates are highest in regions dominated by lateral induction. A circumpolar multi-decadal decline of AAIW formation rates and kinematic subduction rates is found, with largest decline in the southeast Pacific. Here, a strong negative MLD trend is accompanied by freshening of the mixed layer, possibly linked to a multi-decadal increase in dominance of the freshwater versus the thermal buoyancy forcing as a response to large scale warming.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    facet.materialart.
    Unbekannt
    In:  [Talk] In: 10. International Conference on Southern Hemisphere Meteorology and Oceanography, 23.-27.04.2012, Noumea, New Caledonia .
    Publikationsdatum: 2012-06-12
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-09-23
    Beschreibung: Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations. © 2011 Springer-Verlag.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-09-23
    Beschreibung: Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations. © 2011 Springer-Verlag.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2023-11-28
    Beschreibung: Our research focuses on the detection of ocean carbon uptake regimes that are critical in the context of comprehending climate change. One observation among geoscientific data in Earth System Sciences is that the datasets often contain local and distinct statistical distributions posing a major challenge in applying clustering algorithms for data analysis. The use of global parameters in many clustering algorithms is often inadequate to capture such local distributions. In this study, we propose a novel tool to detect and visualize oceanic carbon uptake clusters. We implement a distance-variance selection method (augmented by BIC scores) on agglomerative hierarchical clustering constructed upon a regional multivariate linear regression model set. Instead of relying on a global distance, users can select the local distance and variance thresholds on our tool to detect the connections on the dendrograms that stand as potential clusters by considering both compactness and similarity.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...