GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.
    Description: Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Description: Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to Rappé. The Hawaii Institute of Marine Biology (particularly the Rappé Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.
    Description: 2020-02-22
    Keywords: Coral reefs ; Ocean acidification ; Climate change ; Heterotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...