GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Singapore :Springer,
    Schlagwort(e): Microbial enzymes. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (451 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811901553
    Serie: Environmental and Microbial Biotechnology Series
    DDC: 579.17
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Singapore :Springer,
    Schlagwort(e): Crop yields. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (448 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811950292
    Serie: Microorganisms for Sustainability Series ; v.37
    DDC: 579.178
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Editors and Contributors -- Chapter 1: Fungal Microbiomes: The Functional Potential for Plant Growth Promotion and Opportunities for Agriculture -- 1.1 Introduction -- 1.2 The Fungal Microbiome (Mycobiomes) -- 1.2.1 Molecular Markers and Fungal Metagenomics in Agriculture -- 1.2.2 Core Mycobiomes and Plant Health -- 1.3 The Mycobiome and Sustainable Agriculture -- 1.3.1 Mycobiomes Boost Plant Growth -- 1.3.2 Plant Growth-Promoting Fungal Microbiomes in Disease Management -- 1.4 Agroecology, Sustainable Agriculture, and Fungal Microbiomes -- 1.5 Opportunities for New Applications of Beneficial Fungal Communities to Improve Soils, Plant Growth, and Plant Health -- 1.5.1 Soil Management and Fertilization -- 1.5.2 Crop Diversity at Local Scale -- 1.5.3 The Agronomic Dark Triad: Weeds, Pests, and Diseases -- 1.6 Conclusion -- References -- Chapter 2: Unearthing the Modern Trends and Concepts of Rhizosphere Microbiome in Relation to Plant Productivity -- 2.1 Introduction -- 2.2 Composition, Abundance, and Diversity of Rhizosphere Microbiome -- 2.3 Types of Interactions Between Microbes and Plants -- 2.3.1 Negative Interactions in the Rhizosphere -- 2.3.2 Positive Interactions in the Rhizosphere -- 2.4 Evolution of Plant-Microbe Interaction -- 2.5 Rhizosphere Microbiome Assembly -- 2.5.1 Factors Affecting the Assembly of Microbial Community in the Rhizosphere -- 2.5.1.1 Plant Growth Changes Root Metabolite and Assembly of the Rhizosphere Microbiome -- 2.5.1.2 Abiotic and Biotic Stresses Modulate Root Exudation and Recruit the Rhizosphere Microbiome -- 2.6 Impact of Rhizosphere Communities on Plant Growth and Diseases Resistance -- 2.6.1 Rhizosphere Engineering -- 2.6.2 Plant-Mediated Engineering -- 2.6.3 Microbiome-Mediated Engineering -- 2.6.4 Engineering the Interactions Between Plants and Microbes. , 2.7 Techniques Associated with Rhizosphere Microbiome in Relation to Plant Productivity -- 2.7.1 Genomics -- 2.7.1.1 Polymerase Chain Reaction -- 2.7.2 Restriction Fragment Length Polymorphism -- 2.7.3 DNA Sequencing -- 2.7.4 Rhizospheric Microbiome Characterization by Next-Generation Sequencing -- 2.7.5 DNA Cloning -- 2.7.6 Blending Strategies -- 2.8 Metagenomics -- 2.8.1 Integrated Metagenomics Methods -- 2.9 Bioinformatics Tools -- 2.9.1 Metagenome Analysis Software -- 2.9.2 Transcriptomics -- 2.9.3 Proteomics Methods -- 2.9.4 Metaproteomics Methods -- 2.9.5 Metabolomics -- 2.9.6 Phenomics -- 2.10 The Role of CRISPR for Plant Development -- 2.11 Basics of CRISPR-Mediated Plant-Microbial Interactions in Agriculture -- 2.12 Conclusion -- References -- Chapter 3: The Role of the Root Microbiome in the Utilization of Functional Traits for Increasing Plant Productivity -- 3.1 Introduction -- 3.2 Overview of the Root Microbiome -- 3.3 Functional Traits to Enhance Plant Productivity -- 3.3.1 Biofertilizers that Impact Mineral Nutrient Availability and Acquisition by Roots -- 3.3.1.1 Nitrogen Fixation -- 3.3.1.2 Phosphorus Bioavailability and Uptake -- 3.3.1.3 Increasing Soil Iron Bioavailability via Bacterial Siderophores -- 3.3.2 Drought Tolerance -- 3.3.3 Biocontrol of Plant Diseases -- 3.3.4 Plant Hormone-Producing Bacteria -- 3.3.4.1 Indole-3-Acetic Acid (IAA) -- 3.3.4.2 Cytokinin -- 3.3.4.3 ACC Deaminase Activity and Ethylene -- 3.4 Conclusions -- 3.4.1 Genome-Level Investigations of the Root Microbiome and Holo-Omics Are Required to Fully Exploit Microbiome Functional Tr... -- References -- Chapter 4: Crop Microbiome for Sustainable Agriculture in Special Reference to Nanobiology -- 4.1 Introduction -- 4.2 Nanotechnology in Sustainable Agriculture -- 4.2.1 Nano-Agrochemicals -- 4.3 Nanoparticles and Plant Microbiomes -- 4.3.1 Positive Impact. , 4.3.2 Negative Impact -- 4.3.3 Nanomaterial´s Role in Crop Abiotic Stress -- 4.4 Future Trends and Challenges -- 4.5 Conclusion -- References -- Chapter 5: Changes in Plant Microbiome in Response to Abiotic Stress -- 5.1 Introduction -- 5.2 Abiotic Stresses and Plants -- 5.2.1 Consequences of Drought -- 5.2.2 Consequences of Flooding -- 5.2.3 Consequences of Salinity -- 5.2.4 Consequences of Extreme Temperature -- 5.2.5 Consequences of Heavy Metals -- 5.2.6 Consequences of Nutrition Deficiency -- 5.3 Microbiome -- 5.3.1 Role of Microbiome in Relieving Drought -- 5.3.2 Role of the Microbiome in Relieving Flooding -- 5.3.3 Role of the Microbiome in Relieving Salinity -- 5.3.4 Role of the Microbiome in Relieving Extreme Temperatures -- 5.3.5 Role of the Microbiome in Relieving Heavy Metals -- 5.3.6 Role of the Microbiome in Relieving Nutrient Deficiency -- 5.4 Current Insights and Future Prospectives of Research -- 5.5 Conclusion -- References -- Chapter 6: Functional Potential of Plant Microbiome for Sustainable Agriculture in Conditions of Abiotic Stresses -- 6.1 Introduction -- 6.2 Role of Plant Microbiome in Metal(loid) Stress Tolerance -- 6.3 Role of Plant Microbiome in Drought Stress Tolerance -- 6.4 Role of Plant Microbiome in Salinity Stress Tolerance -- 6.5 Sustainable Agriculture in the Future Scenarios -- References -- Chapter 7: The Beneficial Plant Microbial Association for Sustainable Agriculture -- 7.1 Introduction -- 7.2 Beneficial Microbial Interactions in Plants -- 7.3 Rhizosphere Microbiome Interaction -- 7.3.1 Rhizobium Nodulation: A Beneficial Microbe-Plant Interaction -- 7.3.2 Azotobacter -- 7.3.3 Azospirillum -- 7.3.4 Actinorhizal (Frankia-Plants) Interaction -- 7.3.5 Mycorrhizal Interaction -- 7.3.5.1 Ectomycorrhizae -- 7.3.5.2 Endomycorrhizae -- 7.3.5.3 Fungal Endophytes -- 7.3.6 Benefits of Fungal-Plant Interactions. , 7.3.6.1 Soil Health -- 7.3.6.2 Nitrogen Uptake -- 7.3.6.3 Phosphate Transfer -- 7.3.6.4 Other Soil Nutrients Transport -- 7.3.6.5 Mutual Exchange of Minerals -- 7.3.6.6 Drought Resistance -- 7.3.6.7 Salinity Stress Tolerance -- 7.3.6.8 Heavy Metal(s) Tolerance -- 7.3.6.9 Adaptation Under High and Low Temperature -- 7.4 Beneficial Microbial Association on Phyllosphere -- 7.4.1 Phyllosphere Microbiome -- 7.4.1.1 Phyllosphere Bacteria -- 7.4.1.2 Phyllosphere Fungi -- 7.4.1.3 Phyllosphere Actinomycetes -- 7.4.2 Functions of Phyllosphere Microorganism for Sustainable Agriculture -- 7.4.2.1 Plant Nutrition Acquisition and Growth -- 7.4.2.2 Biological Control -- 7.4.2.3 Anti-insect Activity -- 7.4.2.4 Host Stress Tolerance -- 7.5 PGBs Bioinoculant Formulation for Sustainable Agriculture -- 7.5.1 Microbial Consortium as Bioinoculum -- 7.6 Engineering Host Microbiome for Sustainable Agriculture -- 7.6.1 Rhizosphere Microbiome Engineering -- 7.7 Conclusion -- References -- Chapter 8: Microbiome of Plants: The Diversity, Distribution, and Their Potential for Sustainable Agriculture -- 8.1 Introduction -- 8.2 Plant Microbiome: Diversity, Composition, and Distribution -- 8.3 Approaches for Studying Plant Microbiome Diversity -- 8.4 Factors Affecting Plant Microbiome Diversity -- 8.4.1 Impact of Genomic Organization -- 8.4.2 Impact of Agricultural Activities -- 8.4.3 Impact of Bioinoculants -- 8.4.4 Impact of Pathogens -- 8.4.5 Impacts of Abiotic Factors -- 8.5 Role of Plant Microbiome in Sustainable Agriculture -- 8.6 Current Trends and Future Perspectives -- References -- Chapter 9: Decoding Beneficial Plant Microbe Association with Latest Techniques for Sustainable Agriculture -- 9.1 Introduction -- 9.1.1 Microbiomes and Potential -- 9.2 Abiotic and Biotic Stress Tolerance -- 9.2.1 Abiotic Stress and Microbial Potential. , 9.2.2 Salt Stress and Heavy Metal Stress -- 9.2.3 Thermal and Radiation Stress -- 9.2.4 Drought Stress -- 9.3 Biotic Stress and Microbial Potential -- 9.4 Modern Approaches for Sustainable Agriculture -- 9.4.1 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas System -- 9.4.2 Gene Editing -- 9.4.3 Transcription Activator like Effector Nucleases (TALEN) -- 9.5 Analytical Tools and Techniques -- 9.5.1 Gas Chromatography-Mass Spectrometry (GC-MS) -- 9.5.2 Capillary Electrophoresis-Mass Spectrometry -- 9.5.3 Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry (FTICR-MS) -- 9.5.4 Matrix-Assisted Laser Desorption/Ionization (MALDI) -- 9.5.5 Nuclear Magnetic Resonance (NMR) -- 9.6 OMICS Approaches -- 9.6.1 Genomics -- 9.6.2 Transcriptomics -- 9.6.3 Proteomics -- 9.6.4 Metabolomics -- 9.7 Conclusion -- References -- Chapter 10: Phosphate Solubilizing Microorganisms: Multifarious Applications -- 10.1 Introduction -- 10.2 Phosphorus in Soil -- 10.3 Phosphate Solubilizing Microorganisms -- 10.4 Need of Phosphate Solubilizing Microorganism -- 10.5 Mechanisms of Phosphate Solubilization -- 10.5.1 Inorganic Phosphate Solubilization -- 10.5.2 Organic Phosphate Solubilization -- 10.5.3 Phosphatase -- 10.5.4 Phytase -- 10.5.5 Phosphonatases -- 10.6 Application of Phosphate Solubilizing Microorganisms -- 10.6.1 Phosphate Solubilizing Microorganisms as Plant Growth Promoters -- 10.6.2 Phosphate Solubilizing Microorganisms in Ecological Restoration and Phosphorus Cycling -- 10.6.3 Phosphate Solubilizing Microorganisms in Sustainable Agriculture -- 10.6.4 Phosphate Solubilizing Microorganisms in Immobilization of Heavy Metals -- 10.7 Conclusion -- References -- Chapter 11: Bacillus and Streptomyces for Management of Biotic Stresses in Plants for Sustainable Agriculture -- 11.1 Introduction -- 11.1.1 General -- 11.2 Biotic Stress. , 11.3 Bacillus and Streptomyces.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...