GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Geophysical Union  (2)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C12005, doi:10.1029/2007JC004145.
    Beschreibung: We have evaluated a regional-scale simulation of the Mediterranean outflow by comparison with field data obtained in the 1988 Gulf of Cádiz Expedition. Our ocean model is based upon the Hybrid Coordinate Ocean Model (HYCOM) and includes the Richardson number–dependent entrainment parameterization of Xu et al. (2006). Given realistic topography and sufficient resolution, the model reproduces naturally the major, observed features of the Mediterranean outflow in the Gulf of Cádiz: the downstream evolution of temperature, salinity, and velocity profiles, the mean path and the spreading of the outflow plume, and most importantly, the localized, strong entrainment that has been observed to occur just west of the Strait of Gibraltar. As in all numerical solutions, there is some sensitivity to horizontal and vertical resolution. When the resolution is made coarser, the simulated currents are less vigorous and there is consequently less entrainment. Our Richardson number–dependent entrainment parameterization is therefore not recommended for direct application in coarse-resolution climate models. We have used the high-resolution regional model to investigate the response of the Mediterranean outflow to a change in the freshwater balance over the Mediterranean basin. The results are found in close agreement with the marginal sea boundary condition (MSBC): A more saline and dense Mediterranean deep water generates a significantly greater volume transport of the Mediterranean product water having only very slightly greater salinity.
    Beschreibung: National Science Foundation via grant OCE0336799 and the National Ocean Partnership Program (NOPP) via award N000140410676.
    Schlagwort(e): Mediterranean outflow ; Entrainment parameterization ; Climate
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C09039, doi:10.1029/2005JC003338.
    Beschreibung: New satellite-based observations reveal that westward translating anticyclonic rings are generated as a portion of the Somali Current accelerates northward through the Socotra Passage near the mouth of the Gulf of Aden. Rings thus formed exhibit azimuthal geostrophic velocities exceeding 50 cm/s, are comparable in overall diameter to the width of the Gulf of Aden (250 km), and translate westward into the gulf at 5–8 cm/s. Ring generation is most notable in satellite ocean color imagery in November immediately following the transition between southwest (boreal summer) and northeast (winter) monsoon regimes. The observed rings contain anomalous fluid within their core which reflects their origin in the equator-crossing Somali Current system. Estimates of Socotra Passage flow variability derived from satellite altimetry provide evidence for a similar ring generation process in May following the winter-to-summer monsoon transition. Cyclonic recirculation eddies are observed to spin up on the eastern flank of newly formed rings with the resulting vortex pair translating westward together. Recent shipboard and Lagrangian observations indicate that vortices of both sign have substantial vertical extent and may dominate the lateral circulation at all depths in the eastern Gulf of Aden.
    Beschreibung: This investigation is a component of the Red Sea Outflow Experiment (REDSOX) sponsored by the U.S. National Science Foundation through grants OCE 98-18464 and OCE 04-24647 to the Woods Hole Oceanographic Institution and OCE 98-19506 and OCE 03-51116 to the University of Miami.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...