GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Schlagwort(e): Hochschulschrift
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (114 Seiten = 8 MB) , Graphen
    Ausgabe: 2021
    Sprache: Deutsch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Koblenz : bfg Bundesanstalt für Gewässerkunde, KLIWAS Koordination
    Schlagwort(e): Forschungsbericht ; Nordsee ; Klima ; Modell
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (270 Seiten, 20,8 MB) , Diagramme, Karten
    Serie: KLIWAS Schriftenreihe 27
    Sprache: Englisch
    Anmerkung: Literaturverzeichnis: Seite 88-92
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-12-11
    Beschreibung: Based on the results of a numerical ocean model, we investigate statistical correlations between wind forcing, surface salinity and freshwater transport out of the Baltic Sea on one hand, and Norwegian coastal current freshwater transport on the other hand. These correlations can be explained in terms of physics and reveal how the two freshwater transports are linked with wind forcing, although this information proves to be non-sufficient when it comes to the dynamics of the Norwegian coastal current. Based on statistical correlations, the Baltic Sea freshwater transport signal is reconstructed and shows a good correlation but a poor variability when compared with the measured signal, at least when data filtered on a two-daily time scale is used. A better variability coherence is reached when data filtered on a weekly or monthly time scale is used. In the latest case, a high degree of precision is reached for the reconstructed signal. Using the same kind of methods for the case of the Norwegian coastal current, the negative peaks of the freshwater transport signal can be reconstructed based on wind data only, but the positive peaks are under-represented although some of them exist mostly because the meridional wind forcing along the Norwegian coast is taken into account. Adding Norwegian coastal salinity data helps improving the reconstruction of the positive peaks, but a major improvement is reached when adding non-linear terms in the statistical reconstruction. All coefficients used to re-construct both freshwater transport signals are provided for use in European Shelf or climate modeling configurations. Highlights : • We model the thermo-haline circulation of the Baltic and North Sea. • We compute statistical correlations between different diagnostics. • We rebuild transports for the Baltic Sea outflow and the Norwegian current. • We use a physical analysis to improve the results of the statistical reconstruction. • We provide coefficients for use in NW European shelf configurations.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  (Diploma thesis), Christian-Albrechts-Universität, Kiel, Kiel, Germany, 110 pp
    Publikationsdatum: 2021-06-03
    Materialart: Thesis , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-10-12
    Materialart: Report , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Selbstverlag des DWD
    In:  [Paper] In: Deutsche Meteorologen-Tagung, 14.-18.09.1998, Leipzig, Germany ; pp. 509-510 .
    Publikationsdatum: 2020-05-20
    Materialart: Conference or Workshop Item , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-10-07
    Beschreibung: A systematic intercomparison of three realistic eddy-permitting models of the North Atlantic circulation has been performed. The models use different concepts for the discretization of the vertical coordinate, namely geopotential levels, isopycnal layers, terrain-following (sigma) coordinates, respectively. Although these models were integrated under nearly identical conditions, the resulting large-scale model circulations show substantial differences. The results demonstrate that the large-scale thermohaline circulation is very sensitive to the model representation of certain localised processes, in particular to the amount and water mass properties of the overflow across the Greenland–Scotland region, to the amount of mixing within a few hundred kilometers south of the sills, and to several other processes at small or sub-grid scales. The different behaviour of the three models can to a large extent be explained as a consequence of the different model representation of these processes.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-01-31
    Beschreibung: We present Nemo-Nordic, a Baltic and North Sea model based on the NEMO ocean engine. Surrounded by highly industrialized countries, the Baltic and North seas and their assets associated with shipping, fishing and tourism are vulnerable to anthropogenic pressure and climate change. Ocean models providing reliable forecasts and enabling climatic studies are important tools for the shipping infrastructure and to get a better understanding of the effects of climate change on the marine ecosystems. Nemo-Nordic is intended to be a tool for both short-term and long-term simulations and to be used for ocean forecasting as well as process and climatic studies. Here, the scientific and technical choices within Nemo-Nordic are introduced, and the reasons behind the design of the model and its domain and the inclusion of the two seas are explained. The model's ability to represent barotropic and baroclinic dynamics, as well as the vertical structure of the water column, is presented. Biases are shown and discussed. The short-term capabilities of the model are presented, especially its capabilities to represent sea level on an hourly timescale with a high degree of accuracy. We also show that the model can represent longer timescales, with a focus on the major Baltic inflows and the variability in deep-water salinity in the Baltic Sea.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2024-02-07
    Beschreibung: Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-01
    Beschreibung: Atmospheric rivers (ARs) are important drivers of hazardous precipitation levels and are often associated with intense floods. So far, the response of ARs to climate change in Europe has been investigated using global climate models within the CMIP5 framework. However, the spatial resolution of those models (1–3∘) is too coarse for an adequate assessment of local to regional precipitation patterns. Using a regional climate model with 0.22∘ resolution, we downscaled an ensemble consisting of 1 ERA-Interim (ERAI) reanalysis data hindcast simulation, 9 global historical, and 24 climate scenario simulations following greenhouse gas emission scenarios RCP2.6, RCP4.5, and RCP8.5. The performance of the climate model to simulate AR frequencies and AR-induced precipitation was tested against ERAI. Overall, we find a good agreement between the downscaled CMIP5 historical simulations and ERAI. However, the downscaled simulations better represented small-scale spatial characteristics. This was most evident over the terrain of the Iberian Peninsula, where the AR-induced precipitation pattern clearly reflected prominent east–west topographical elements, resulting in zonal bands of high and low AR impact. Over central Europe, the models simulated a smaller propagation distance of ARs toward eastern Europe than obtained using the ERAI data. Our models showed that ARs in a future warmer climate will be more frequent and more intense, especially in the higher-emission scenarios (RCP4.5, RCP8.5). However, assuming low emissions (RCP2.6), the related changes can be mostly mitigated. According to the high-emission scenario RCP8.5, AR-induced precipitation will increase by 20 %–40 % in western central Europe, whereas mean precipitation rates increase by a maximum of only 12 %. Over the Iberian Peninsula, AR-induced precipitation will slightly decrease (∼6 %) but the decrease in the mean rate will be larger (∼15 %). These changes will lead to an overall increased fractional contribution of ARs to heavy precipitation, with the greatest impact over the Iberian Peninsula (15 %–30 %) and western France (∼15 %). Likewise, the fractional share of yearly maximum precipitation attributable to ARs will increase over the Iberian Peninsula, the UK, and western France. Over Norway, average AR precipitation rates will decline by −5 % to −30 %, most likely due to dynamic changes, with ARs originating from latitudes 〉 60∘ N decreasing by up to 20 % and those originating south of 45∘ N increasing. This suggests that ARs over Norway will follow longer routes over the continent, such that additional moisture uptake will be impeded. By contrast, ARs from 〉60∘ N will take up moisture from the North Atlantic before making landfall over Norway. The found changes in the local AR pathway are probably driven by larger-scale circulation changes such as a change in dominating weather regimes and/or changes in the winter storm track over the North Atlantic.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...