GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Kurzfassung: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2023
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 8 ( 2015-04-15), p. 3353-3374
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 8 ( 2015-04-15), p. 3353-3374
    Kurzfassung: The South Pacific convergence zone (SPCZ) is simulated as too zonal a feature in the current generation of climate models, including those in phase 5 of the Coupled Model Intercomparison Project (CMIP5). This zonal bias induces errors in tropical convective heating, with subsequent effects on global circulation. The SPCZ structure, particularly in the subtropics, is governed by the tropical–extratropical interaction between transient synoptic systems and the mean background state. In this study, analysis of synoptic variability in the simulated subtropical SPCZ reveals that the basic mechanism of tropical–extratropical interaction is generally well simulated, with storms approaching the SPCZ along comparable trajectories to observations. However, there is a broad spread in mean precipitation and its variability across the CMIP5 ensemble. Intermodel spread appears to relate to a biased background state in which the synoptic waves propagate. In particular, the region of mean negative zonal stretching deformation or “storm graveyard” in the upper troposphere is displaced in CMIP5 models to the northeast of its position in reanalysis data, albeit with pronounced (≈25°) intermodel longitudinal spread. Precipitation along the eastern edge of the SPCZ shifts in accordance with a storm graveyard shift, and in general models with stronger storm graveyards show higher precipitation variability. Building on prior SPCZ research, it is suggested that SPCZs simulated by CMIP5 models are not simply too zonal; rather, in models the subtropical SPCZ manifests a diagonal tilt similar to observations while SST biases force an overly zonal tropical SPCZ, resulting in a more discontinuous SPCZ than observed.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2015
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 488, No. 7411 ( 2012-8), p. 365-369
    Materialart: Online-Ressource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2012
    ZDB Id: 120714-3
    ZDB Id: 1413423-8
    SSG: 11
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2013
    In:  Nature Climate Change Vol. 3, No. 4 ( 2013-4), p. 417-423
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 3, No. 4 ( 2013-4), p. 417-423
    Materialart: Online-Ressource
    ISSN: 1758-678X , 1758-6798
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2013
    ZDB Id: 2603450-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Progress in Oceanography, Elsevier BV, Vol. 183 ( 2020-04), p. 102307-
    Materialart: Online-Ressource
    ISSN: 0079-6611
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2020
    ZDB Id: 1497436-8
    ZDB Id: 4062-9
    SSG: 21,3
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2021
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 8 ( 2021-08-01), p. S143-S198
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 8 ( 2021-08-01), p. S143-S198
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2021
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2020
    In:  Bulletin of the American Meteorological Society Vol. 101, No. 8 ( 2020-08-01), p. S129-S184
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 101, No. 8 ( 2020-08-01), p. S129-S184
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2020
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S146-S206
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S146-S206
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2023
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2019
    In:  Weather, Climate, and Society Vol. 11, No. 1 ( 2019-01-01), p. 3-15
    In: Weather, Climate, and Society, American Meteorological Society, Vol. 11, No. 1 ( 2019-01-01), p. 3-15
    Kurzfassung: Potential changing climate threats in the tropical and subtropical North Pacific Ocean were assessed, using coupled ocean–atmosphere and atmosphere-only general circulation models, to explore their response to projected increasing greenhouse gas emissions. Tropical cyclone occurrence, described by frequency and intensity, near islands housing major U.S. defense installations was the primary focus. Four island regions—Guam and Kwajalein Atoll in the tropical northwestern Pacific, Okinawa in the subtropical northwestern Pacific, and Oahu in the tropical north-central Pacific—were considered, as they provide unique climate and geographical characteristics that either enhance or reduce the tropical cyclone risk. Guam experiences the most frequent and severe tropical cyclones, which often originate as weak systems close to the equator near Kwajalein and sometimes track far enough north to affect Okinawa, whereas intense storms are the least frequent around Oahu. From assessments of models that simulate well the tropical Pacific climate, it was determined that, with a projected warming climate, the number of tropical cyclones is likely to decrease for Guam and Kwajalein but remain about the same near Okinawa and Oahu; however, the maximum intensity of the strongest storms may increase in most regions. The likelihood of fewer but stronger storms will necessitate new localized assessments of the risk and vulnerabilities to tropical cyclones in the North Pacific.
    Materialart: Online-Ressource
    ISSN: 1948-8327 , 1948-8335
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2019
    ZDB Id: 2628859-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2019
    In:  Journal of Geophysical Research: Oceans Vol. 124, No. 4 ( 2019-04), p. 2787-2802
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 124, No. 4 ( 2019-04), p. 2787-2802
    Kurzfassung: The highest sea level events in Honolulu tend to cluster together in time Decadal modulations of tidal amplitude temporarily reduce or enhance impacts of sea level rise Transitions from occasional to chronic threshold exceedance can occur in less than a decade
    Materialart: Online-Ressource
    ISSN: 2169-9275 , 2169-9291
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2019
    ZDB Id: 2016804-4
    ZDB Id: 161667-5
    ZDB Id: 3094219-6
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...