GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2022
    In:  Journal of Geophysical Research: Atmospheres Vol. 127, No. 18 ( 2022-09-27)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 127, No. 18 ( 2022-09-27)
    Kurzfassung: Dry firestorm plumes are not hot enough to ascend to the stratosphere With the addition of latent heating, plumes can reach the stratosphere The inclusion of moisture is essential to predicting the climate impacts of firestorms
    Materialart: Online-Ressource
    ISSN: 2169-897X , 2169-8996
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2022
    ZDB Id: 710256-2
    ZDB Id: 2016800-7
    ZDB Id: 2969341-X
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Elsevier BV ; 2018
    In:  Ocean Modelling Vol. 130 ( 2018-10), p. 15-28
    In: Ocean Modelling, Elsevier BV, Vol. 130 ( 2018-10), p. 15-28
    Materialart: Online-Ressource
    ISSN: 1463-5003
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2018
    ZDB Id: 1126496-2
    ZDB Id: 1498544-5
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2018
    In:  Journal of the Atmospheric Sciences Vol. 75, No. 9 ( 2018-09-01), p. 3233-3244
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 75, No. 9 ( 2018-09-01), p. 3233-3244
    Kurzfassung: By introducing an equivalence between magnetostatics and the equations governing buoyant motion, we derive analytical expressions for the acceleration of isolated density anomalies (thermals). In particular, we investigate buoyant acceleration, defined as the sum of the Archimedean buoyancy B and an associated perturbation pressure gradient. For the case of a uniform spherical thermal, the anomaly fluid accelerates at 2B/3, extending the textbook result for the induced mass of a solid sphere to the case of a fluid sphere. For a more general ellipsoidal thermal, we show that the buoyant acceleration is a simple analytical function of the ellipsoid’s aspect ratio. The relevance of these idealized uniform-density results to turbulent thermals is explored by analyzing direct numerical simulations of thermals at a Reynolds number (Re) of 6300. We find that our results fully characterize a thermal’s initial motion over a distance comparable to its length. Beyond this buoyancy-dominated regime, a thermal develops an ellipsoidal vortex circulation and begins to entrain environmental fluid. Our analytical expressions do not describe the total acceleration of this mature thermal, but they still accurately relate the buoyant acceleration to the thermal’s mean Archimedean buoyancy and aspect ratio. Thus, our analytical formulas provide a simple and direct means of estimating the buoyant acceleration of turbulent thermals.
    Materialart: Online-Ressource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2018
    ZDB Id: 218351-1
    ZDB Id: 2025890-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2019
    In:  Journal of Advances in Modeling Earth Systems Vol. 11, No. 4 ( 2019-04), p. 1039-1065
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 11, No. 4 ( 2019-04), p. 1039-1065
    Kurzfassung: Lagrangian particle dispersion is enhanced by smaller‐scale flow features Lagrangian coherent structures are eroded in the presence of submesoscales and waves Satellite‐derived velocities may overestimate the coherence of oceanic eddies
    Materialart: Online-Ressource
    ISSN: 1942-2466 , 1942-2466
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2019
    ZDB Id: 2462132-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2022
    In:  Journal of the Atmospheric Sciences Vol. 79, No. 5 ( 2022-05), p. 1459-1471
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 79, No. 5 ( 2022-05), p. 1459-1471
    Kurzfassung: An isolated source of surface buoyancy, be it a campfire or burning city, gives rise to a turbulent plume. Well above the surface, the plume properties asymptote to the well-known solutions of Morton, Taylor, and Turner (MTT), but a closure is still lacking for the virtual origin. A closure for the virtual origin is sought here in the case of a turbulent plume sustained by a circular source of surface buoyancy in an unstratified and unsheared fluid. In the high-Reynolds-number limit, it is argued that all such plumes asymptote to a single solution. Direct numerical simulation (DNS) of this solution exhibits a virtual origin located a distance below the surface equal to 1.1 times the radius of the buoyancy source. This solution is compared to the previously used assumption that the MTT plume is fully spun up at the surface, and that assumption is found to give buoyancies that are off by an order of magnitude. With regards to the citywide firestorm triggered by the nuclear attack on Hiroshima, it is found that the spun-up-at-surface MTT solution would have trapped radioactive soot within about a hundred meters of the surface, whereas the DNS solution presented here corroborates observations of the plume reaching well into the troposphere.
    Materialart: Online-Ressource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2022
    ZDB Id: 218351-1
    ZDB Id: 2025890-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...