GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Atmospheres Vol. 105, No. D9 ( 2000-05-16), p. 11601-11616
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D9 ( 2000-05-16), p. 11601-11616
    Kurzfassung: Understanding lightning NO x (NO+NO 2 ) production on the cloud scale is key for developing better parameterizations of lightning NO x for use in regional and global chemical transport models. This paper attempts to further the understanding of lightning NO x production on the cloud scale using a cloud model simulation of an observed thunderstorm. Objectives are (1) to infer from the model simulations and in situ measurements the relative production rates of NO x by cloud‐to‐ground (CG) and intracloud (IC) lightning for the storm; (2) to assess the relative contributions in the storm anvil of convective transport of NO x from the boundary layer and NO x production by lightning; and (3) to simulate the effects of the lightning‐generated NO x on subsequent photochemical ozone production. We use a two‐dimensional cloud model that includes a parameterized source of lightning‐generated NO x to study the production and advection of NO x associated with a developing northeast Colorado thunderstorm observed on July 12, 1996, during the Stratosphere‐Troposphere Experiment—Radiation, Aerosols, Ozone (STERAO‐A) field campaign. Model results are compared with the sum of NO measurements taken by aircraft and photostationary state estimates of NO 2 in and around the anvil of the thunderstorm. The results show that IC lightning was the dominant source of NO x in this thunderstorm. We estimate from our simulations that the NO x production per CG flash ( P CG ) was of the order of 200 to 500 mol flash −1 . NO x production per IC flash ( P IC ) appeared to be half or more of that for a CG flash, a higher ratio of P IC / P CG than is commonly assumed. The results also indicate that the majority of NO x (greater than 80%) in the anvil region of this storm resulted from lightning as opposed to transport from the boundary layer. The effect of the lightning NO x on subsequent photochemical ozone production was assessed using a column chemical model initialized with values of NO x , O 3 , and hydrocarbons taken from a horizontally averaged vertical profile through the anvil of the simulated storm. The lightning NO x increased simulated ozone production rates by a maximum of over 7 ppbv d −1 in the upper troposphere downwind of this storm.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2000
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Atmospheres Vol. 105, No. D19 ( 2000-10-16), p. 24409-24429
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D19 ( 2000-10-16), p. 24409-24429
    Kurzfassung: Volcanic aerosols in the stratosphere produce significant transitory solar and infrared radiative perturbations, which warm the stratosphere, cool the surface and affect stratospheric circulation. In this study, using the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model (GCM) with a high vertical resolution and a recently improved radiative transfer code, we investigate the aerosol radiative forcing and the stratospheric temperature response for the June 15, 1991, Mount Pinatubo eruption, the most well observed and largest volcanic eruption of the 20th Century. The investigation is carried out using an updated, comprehensive monthly and zonal‐mean Pinatubo aerosol spectral optical properties data set. While the near‐infrared solar spectral effects contribute substantially to the total stratospheric heating due to aerosols, over the entire global domain the longwave component exceeds the solar in causing a warming of the lower stratosphere (30–100 hPa). In contrast, the magnitude of the solar perturbation (increased reflection) in the overall surface‐atmosphere radiative heat balance exceeds that due to the longwave (infrared trapping effect). The troposphere affects the stratospheric radiative forcing, mainly because of the dependence of the reflected solar and upward longwave radiation on cloudiness, and this adds to the uncertainty in the calculation of the stratospheric temperature response. A four‐member ensemble of 2‐year GCM integrations (June 1991 to May 1993) were performed using fixed sea surface temperatures and a cloud prediction scheme, one set with and another without the volcanic aerosols. The temperature of the tropical lower stratosphere increases by a statistically significant 3 K, which is almost 1 K less than in previous investigations that employed coarser vertical resolution in the stratosphere, but is still larger than observed. In the low latitudes the evolution of the simulated temperature response mimics that observed only through about the first year. Thereafter, despite a significant aerosol optical depth perturbation in the tropical atmosphere, there is a lack of a signature in the temperature response that can be unambiguously attributed to the Pinatubo aerosols, suggesting other forced or unforced variations (e.g., ozone changes, quasi‐biennial oscillation) occurring in the actual atmosphere which are unaccounted for in the model. In the high latitudes the large interannual variability prohibits a clear quantitative comparison between simulated and observed temperature changes and renders the aerosol‐induced thermal signals statistically insignificant. In the global mean the evolution of the simulated lower stratospheric temperature response is in excellent agreement with the observation for the entire 2‐year period, in contrast to the model‐observation comparison at the low latitudes. This arises because in the global mean the stratospheric response is not sensitive to dynamical adjustments within the atmosphere caused by internal variations, and depends principally on the external radiative forcing caused by the aerosols.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2000
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Atmospheres Vol. 103, No. D12 ( 1998-06-27), p. 13837-13857
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 103, No. D12 ( 1998-06-27), p. 13837-13857
    Kurzfassung: Volcanic sulfate aerosols in the stratosphere produce significant long‐term solar and infrared radiative perturbations in the Earth's atmosphere and at the surface, which cause a response of the climate system. Here we study the fundamental process of the development of this volcanic radiative forcing, focusing on the eruption of Mount Pinatubo in the Philippines on June 15, 1991. We develop a spectral‐, space‐, and time‐dependent set of aerosol parameters for 2 years after the Pinatubo eruption using a combination of SAGE II aerosol extinctions and UARS‐retrieved effective radii, supported by SAM II, AVHRR, lidar and balloon observations. Using these data, we calculate the aerosol radiative forcing with the ECHAM4 general circulation model (GCM) for cases with climatological and observed sea surface temperature (SST), as well as with and without climate response. We find that the aerosol radiative forcing is not sensitive to the climate variations caused by SST or the atmospheric response to the aerosols, except in regions with varying dense cloudiness. The solar forcing in the near infrared contributes substantially to the total stratospheric heating. A complete formulation of radiative forcing should include not only changes of net fluxes at the tropopause but also the vertical distribution of atmospheric heating rates and the change of downward thermal and net solar radiative fluxes at the surface. These forcing and aerosol data are available for GCM experiments with any spatial and spectral resolution.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 1998
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Atmospheres Vol. 100, No. D12 ( 1995-12-20), p. 26211-26227
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 100, No. D12 ( 1995-12-20), p. 26211-26227
    Kurzfassung: To examine the causes of the observed diurnally asymmetrical climate change over land, the roles of different physical mechanisms are evaluated using a radiative‐convective model of the diurnal cycle. This model explicitly calculates a complete set of physical processes, including the water vapor distribution, clouds, transports in the turbulent boundary layer, and convection. Calculations were carried out for midlatitude summer and winter and for tropical spring conditions taking into account the most important climate forcings: CO 2 increase, tropospheric aerosol pollution, and the combined case with simultaneous CO 2 and aerosol effects. We find that feedbacks in the climate system are more important than forcings in producing diurnal asymmetry. The water vapor shortwave feedback dominates the diurnal distribution of the response. For all cases with warming, the diurnal temperature range (DTR) decreases, not due to the greenhouse effect of water vapor, but as a result of more intensive absorption of the solar radiation in the near infrared by water vapor and cloud water in a warmer, wetter climate independent of the type of forcing. Aerosol reflection and absorption of solar radiation cool the surface and decrease DTR directly, but the negative daytime water vapor feedback virtually cancels out the diurnal asymmetry. In the combined case, with a 50% CO 2 content increase combined with tropospheric aerosol pollution, which is not far from the current observed conditions over land, the greenhouse warming raises the temperature enough that the direct aerosol effect decreases the DTR. In all cases the time and spatial redistribution of clouds have a significant impact on the climate sensitivity and diurnal cycle. As in the observations, increasing of cloudiness and water vapor content occurs with decreasing of the DTR. In our model the cloudiness and water vapor changes are produced by the same forcings that lower the DTR; they are not independent causes of changes of the DTR, but rather are important internal feedback mechanisms.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 1995
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Atmospheres Vol. 105, No. D3 ( 2000-02-16), p. 3851-3876
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D3 ( 2000-02-16), p. 3851-3876
    Kurzfassung: The relative importance of various odd nitrogen (NO y ) sources including lightning, aircraft, and surface emissions on upper tropospheric total odd nitrogen is illustrated as a first application of the three‐dimensional Stretched‐Grid University of Maryland/Goddard Chemical‐Transport Model (SG‐GCTM). The SG‐GCTM has been developed to look at the effect of localized sources and/or small‐scale mixing processes on the large‐scale or global chemical balance. For this simulation the stretched grid was chosen so that its maximum resolution is located over eastern North America and the North Atlantic; a region that includes most of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) flight paths. The SONEX period (October‐November 1997) is simulated by driving the SG‐GCTM with assimilated data from the Goddard Earth Observing System‐Stratospheric Tracers of Atmospheric Transport Data Assimilation System (GEOS‐STRAT DAS). A new algorithm is used to estimate the lightning flash rates needed to calculate NO y emission by lightning. This algorithm parameterizes the flash rate in terms of upper tropospheric convective mass flux. Model‐calculated upper tropospheric NO y and NO y measurements from the NASA DC‐8 aircraft are compared. Spatial variations in NO y were well captured especially with the stretched‐grid run; however, model‐calculated peaks due to “stratospheric” NO y are occasionally too large. The lightning algorithm reproduces the temporally and spatially averaged total flash rate accurately; however, the use of emissions from observed lightning flashes significantly improves the simulation on a few days, especially November 3, 1997, showing that significant uncertainty remains in parameterizing lightning in chemistry and transport models. Aircraft emissions contributed ∼15% of the upper tropospheric NO y averaged along SONEX flight paths within the North Atlantic Flight Corridor with the contribution exceeding 40% during portions of some flights.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2000
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 110, No. D14 ( 2005-07-27), p. n/a-n/a
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2005
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2007
    In:  Journal of Geophysical Research: Atmospheres Vol. 112, No. D13 ( 2007-07-16)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 112, No. D13 ( 2007-07-16)
    Kurzfassung: Twenty years ago, the results of climate model simulations of the response to smoke and dust from a massive nuclear exchange between the superpowers could be summarized as “nuclear winter,” with rapid temperature, precipitation, and insolation drops at the surface that would threaten global agriculture for at least a year. The global nuclear arsenal has fallen by a factor of three since then, but there has been an expansion of the number of nuclear weapons states, with additional states trying to develop nuclear arsenals. We use a modern climate model to reexamine the climate response to a range of nuclear wars, producing 50 and 150 Tg of smoke, using moderate and large portions of the current global arsenal, and find that there would be significant climatic responses to all the scenarios. This is the first time that an atmosphere‐ocean general circulation model has been used for such a simulation and the first time that 10‐year simulations have been conducted. The response to the 150 Tg scenario can still be characterized as “nuclear winter,” but both produce global catastrophic consequences. The changes are more long‐lasting than previously thought, however, because the new model, National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE, is able to represent the atmosphere up to 80 km, and simulates plume rise to the middle and upper stratosphere, producing a long aerosol lifetime. The indirect effects of nuclear weapons would have devastating consequences for the planet, and continued nuclear arsenal reductions will be needed before the threat of nuclear winter is removed from the Earth.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2007
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2007
    In:  Eos, Transactions American Geophysical Union Vol. 88, No. 21 ( 2007-05-22), p. 228-231
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 88, No. 21 ( 2007-05-22), p. 228-231
    Kurzfassung: Humans have come to the realization that pollution of the atmosphere with gases and particles in the past 50 years is the dominant cause of atmospheric change [ Intergovernmental Panel on Climate Change , 2007]. While land‐use change can produce large regional effects, ozone depletion, global warming, and nuclear smoke all are humandriven problems that have actual or potential global adverse impacts on our fragile environment, each with severe consequences for humanity. These effects were, or would be, inadvertent and unplanned consequences of normal daily activities, the defense policies of many nations, and nuclear proliferation. Thus, we must seek ways of continuing our normal lives while protecting ourselves from environmental catastrophe.
    Materialart: Online-Ressource
    ISSN: 0096-3941 , 2324-9250
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2007
    ZDB Id: 24845-9
    ZDB Id: 2118760-5
    ZDB Id: 240154-X
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 115, No. D4 ( 2010-02-18)
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2010
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 110, No. D14 ( 2005-07-27), p. n/a-n/a
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2005
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...