GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2023
    In:  Ocean Modelling Vol. 184 ( 2023-08), p. 102209-
    In: Ocean Modelling, Elsevier BV, Vol. 184 ( 2023-08), p. 102209-
    Type of Medium: Online Resource
    ISSN: 1463-5003
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1126496-2
    detail.hit.zdb_id: 1498544-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Climate Vol. 30, No. 11 ( 2017-06-01), p. 4299-4316
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 11 ( 2017-06-01), p. 4299-4316
    Abstract: A theory for intraseasonal atmosphere–ocean–atmosphere feedback is supported whereby oceanic equatorial Rossby waves are partly forced in the eastern Indian Ocean by the Madden–Julian oscillation (MJO), reemerge in the western Indian Ocean ~70 days later, and force large-scale convergence in the atmospheric boundary layer that precedes MJO deep convection. Downwelling equatorial Rossby waves permit high sea surface temperature (SST) and enhance meridional and zonal SST gradients that generate convergent circulations in the atmospheric boundary layer. The magnitude of the SST and SST gradient increases are 0.25°C and 1.5°C Mm−1 (1 megameter is equal to 1000 km), respectively. The atmospheric circulations driven by the SST gradient are estimated to be responsible for up to 45% of the intraseasonal boundary layer convergence observed in the western Indian Ocean. The SST-induced boundary layer convergence maximizes 3–4 days prior to the convective maximum and is hypothesized to serve as a trigger for MJO deep convection. Boundary layer convergence is shown to further augment deep convection by locally increasing boundary layer moisture. Warm SST anomalies facilitated by downwelling equatorial Rossby waves are also associated with increased surface latent heat fluxes that occur after MJO convective onset. Finally, generation of the most robust downwelling equatorial Rossby waves in the western Indian Ocean is shown to have a distinct seasonal distribution.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of the Atmospheric Sciences Vol. 72, No. 10 ( 2015-10-01), p. 3850-3870
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 72, No. 10 ( 2015-10-01), p. 3850-3870
    Abstract: Processes associated with the local amplification of easterly waves (EWs) in the east Pacific warm pool are explored. Developing EWs favor convection in the southwest and northeast quadrants of the disturbance. In nascent EWs, convection favors the southwest quadrant. As the EW life cycle progresses, convection in the northeast quadrant becomes increasingly prominent and southwest quadrant convection wanes. The EW moisture budget reveals that anomalous meridional winds acting on the mean meridional moisture gradient of the ITCZ produce moisture anomalies supportive of convection in the southwest quadrant early in the EW life cycle. As EWs mature, moisture anomalies on the poleward side of the EW begin to grow and are supported by the advection of anomalous moisture by the mean zonal wind. In the southwest and northeast portions of the wave, where convection anomalies are favored, lower-tropospheric vorticity is generated locally through vertical stretching that supports a horizontal tilt of the wave from the southwest to the northeast. EWs with such tilts are then able to draw energy via barotropic conversion from the background cyclonic zonal wind shear present in the east Pacific. Convection anomalies associated with EWs vary strongly with changes in the background intraseasonal state. EWs during westerly and neutral intraseasonal periods are associated with robust convection anomalies. Easterly intraseasonal periods are, at times, associated with very weak EW convection anomalies because of weaker moisture and diluted CAPE variations.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2017
    In:  Geophysical Research Letters Vol. 44, No. 9 ( 2017-05-16), p. 4224-4232
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 44, No. 9 ( 2017-05-16), p. 4224-4232
    Abstract: Equatorial westward jets in the Indian Ocean develop in response to downwelling equatorial Rossby waves Downwelling equatorial Rossby waves maintain warm SST anomalies after intraseasonal convection begins Intraseasonal SST anomalies substantially cool when ocean currents associated with equatorial Rossby waves are removed
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 6 ( 2019-8-8)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of the Atmospheric Sciences Vol. 76, No. 7 ( 2019-07-01), p. 2023-2042
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 76, No. 7 ( 2019-07-01), p. 2023-2042
    Abstract: The atmospheric response to sea surface temperature (SST) variations forced by oceanic downwelling equatorial Rossby waves is investigated using an idealized convection-resolving model. Downwelling equatorial Rossby waves sharpen SST gradients in the western Indian Ocean. Changes in SST cause the atmosphere to hydrostatically adjust, subsequently modulating the low-level wind field. In an idealized cloud model, surface wind speeds, surface moisture fluxes, and low-level precipitable water maximize near regions of strongest SST gradients, not necessarily in regions of warmest SST. Simulations utilizing the steepened SST gradient representative of periods with oceanic downwelling equatorial Rossby waves show enhanced patterns of surface convergence and precipitation that are linked to a strengthened zonally overturning circulation. During these conditions, convection is highly organized, clustering near the maximum SST gradient and ascending branch of the SST-induced overturning circulation. When the SST gradient is reduced, as occurs during periods of weak or absent oceanic equatorial Rossby waves, convection is much less organized and total rainfall is decreased. This demonstrates the previously observed upscale organization of convection and rainfall associated with oceanic downwelling equatorial Rossby waves in the western Indian Ocean. These results suggest that the enhancement of surface fluxes that results from a steepening of the SST gradient is the leading mechanism by which oceanic equatorial Rossby waves prime the atmospheric boundary layer for rapid convective development.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 20 ( 2014-10-15), p. 7603-7621
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 20 ( 2014-10-15), p. 7603-7621
    Abstract: The background atmospheric state of the east Pacific warm pool in which easterly waves develop varies dramatically on intraseasonal time scales. East Pacific intraseasonal variability is well known to modulate local convective and circulation patterns. Westerly (easterly) intraseasonal phases are associated with westerly (easterly) low-level wind and positive (negative) convective anomalies. This study investigates the perturbation available potential energy (PAPE) and perturbation kinetic energy (PKE) budgets of easterly waves composited during westerly, easterly, and neutral intraseasonal phases, respectively. The mechanisms, magnitudes, locations, and vertical structures of easterly waves are shown to strongly vary as a function of intraseasonal phase. Easterly waves draw energy from low-level barotropic conversion, regardless of phase, although the location and magnitude of the conversion varies strongly. During neutral and westerly intraseasonal phases, the generation of PAPE associated with perturbation diabatic heating that is subsequently converted to PKE is the dominant energy source for easterly waves. A novel and previously unrecognized result is the detection of strong barotropic generation of PKE at midlevels during westerly intraseasonal phases. This previously unidentified source of PKE at midlevels is in part due to strong intraseasonal modulation of the background midlevel winds.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 52, No. 2 ( 2022-02), p. 261-288
    Abstract: Upper-ocean heat content and heat fluxes of 10–60-day intraseasonal oscillations (ISOs) were examined using high-resolution currents and hydrographic fields measured at five deep-water moorings in the central Bay of Bengal (BoB) and satellite observations as part of an international effort examining the role of the ocean on monsoon intraseasonal oscillations (MISOs) in the BoB. Currents, temperature, and salinity were sampled over the upper 600–1200 m from July 2018 to June 2019. The 10–60-day velocity ISOs of magnitudes 20–30 cm s −1 were observed in the upper 200 m, and temperature ISOs as large as 3°C were observed in the thermocline near 100 m. The wavelet cospectral analysis reveals multiple periods of ISOs carrying heat southward. The meridional heat-flux divergence associated with the 10–60-day band was strongest in the central BoB at depths between 40 and 100 m, where the averaged flux divergence over the observational period is as large as 10 −7 °C s −1 . The vertically integrated heat-flux divergence in the upper 200 m is about 20–30 W m −2 , which is comparable to the annual-average net surface heat flux in the northern BoB. Correlations between the heat content over the 26°C isotherm and the outgoing longwave radiation indicate that the atmospheric forcing typically leads changes of the oceanic heat content, but in some instances, during fall–winter months, oceanic heat content leads the atmospheric convection. Our analyses suggest that ISOs play an important role in the upper-ocean heat balance by transporting heat southward, while aiding the air–sea coupling at ISO time scales.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 11 ( 2013-06-01), p. 3575-3596
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 11 ( 2013-06-01), p. 3575-3596
    Abstract: During boreal summer (June–October), interactions between intraseasonal variability in the Eastern Hemisphere and east Pacific warm pool are often described as a local amplification of the Madden–Julian oscillation (MJO), the dominant mode of tropical intraseasonal variability. The MJO in the Eastern Hemisphere emits eastward-propagating dry Kelvin waves that are a source of rapid communication with the east Pacific. However, the precise mechanism by and degree to which intraseasonal variability in the Eastern Hemisphere interacts with the east Pacific are not well understood. To quantify the relationship, sensitivity tests in two separate models are used: the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) and the International Pacific Research Center Regional Atmosphere Model (IRAM). Different methods are employed to isolate the east Pacific from outside intraseasonal signals in each model. When isolated from Kelvin wave fronts associated with the MJO, the CAM produces similar east Pacific intraseasonal variability to observations. In the CAM, the communication of intraseasonal signals by Kelvin waves does not appear necessary to the initiation and maintenance of east Pacific intraseasonal variability, suggesting that such events can be independent of the MJO. However, communication by MJO-initiated Kelvin waves provides a possible phase locking mechanism between hemispheres. When the east Pacific is isolated from all remote intraseasonal signals in the IRAM, intraseasonal events there are weak and incoherent. In the IRAM communication across the Pacific appears necessary to the representation of east Pacific intraseasonal variability. However, the IRAM contains an important bias in the climatological low-level winds that may suppress east Pacific intraseasonal events.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Journal of Geophysical Research: Oceans Vol. 125, No. 6 ( 2020-06)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 125, No. 6 ( 2020-06)
    Abstract: Intraseasonal equatorial westward jet anomalies in the Indian Ocean are generated and terminated by local intraseasonal surface winds Barrier layer thickness increases following the passage of westward jets Intraseasonal westward jets freshen the equatorial mixed layer through zonal advection
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...