GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 50, No. 2 ( 2023-01-28)
    Abstract: A close relationship is found between serial cyclone clustering (SCC) at 5°W and weather regimes (WRs) in the North Atlantic‐European region SCC in mid and high latitudes (55°N, 65°N) is mainly associated with cyclonic and in low latitudes (45°N) with anticyclonic WR life cycles Regardless of the selected latitude, SCC occurs mostly during an active regime life cycle and is manifested in a well‐established WR
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Weather and Climate Dynamics, Copernicus GmbH, Vol. 4, No. 2 ( 2023-05-11), p. 399-425
    Abstract: Abstract. Atmospheric blocking describes a situation in which a stationary and persistent anticyclone blocks the eastward propagation of weather systems in the midlatitudes and can lead to extreme weather events. In the North Atlantic–European region, blocking contributes to life cycles of weather regimes which are recurrent, quasi-stationary, and persistent patterns of the large-scale circulation. Despite progress in blocking theory over the last decades, we are still lacking a comprehensive, process-based conceptual understanding of blocking dynamics. Here we combine three different perspectives on so-called “blocked” weather regimes, namely the commonly used Eulerian and Lagrangian perspectives, complemented by a novel quasi-Lagrangian perspective. Within the established framework of midlatitude potential vorticity (PV) thinking, the joint consideration of the three perspectives enables a comprehensive picture of the dynamics and quantifies the importance of dry and moist processes during a blocked weather regime life cycle. We apply the diagnostic framework to a European blocking weather regime life cycle in March 2016, which was associated with a severe forecast bust in the North Atlantic–European region. The three perspectives highlight the importance of moist processes during the onset or maintenance of the blocked weather regime. The Eulerian perspective, which identifies the processes contributing to the onset and decay of the regime, indicates that dry quasi-barotropic wave dynamics and especially the eastward advection of PV anomalies (PVAs) into the North Atlantic–European region dominate the onset of the regime pattern. By tracking the negative upper-tropospheric PVA associated with the “block”, the quasi-Lagrangian view reveals, for the same period, abrupt amplification due to moist processes. This is in good agreement with the Lagrangian perspective indicating that a large fraction of air parcels that end up in the negative PVA experience diabatic heating. Overall, the study shows that important contributions to the development take place outside of the region in which the blocked weather regime eventually establishes, and that a joint consideration of different perspectives is important in order not to miss processes, in particular moist-baroclinic dynamics, contributing to a blocked regime life cycle.
    Type of Medium: Online Resource
    ISSN: 2698-4016
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2982467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2023
    In:  Weather and Climate Dynamics Vol. 4, No. 2 ( 2023-04-04), p. 265-285
    In: Weather and Climate Dynamics, Copernicus GmbH, Vol. 4, No. 2 ( 2023-04-04), p. 265-285
    Abstract: Abstract. Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. Due to their role in weather extremes and atmospheric predictability, regimes that feature a blocking anticyclone are of particular interest. This study investigates the dynamics of these “blocked” regimes in the North Atlantic–European region from a year-round perspective. For a comprehensive diagnostic, wave activity concepts and a piecewise potential vorticity (PV) tendency framework are combined. The latter essentially quantifies the well-established PV perspective of mid-latitude dynamics. The four blocked regimes (namely Atlantic ridge, European blocking, Scandinavian blocking, and Greenland blocking) during the 1979–2021 period of ERA5 reanalysis are considered. Wave activity characteristics exhibit distinct differences between blocked regimes. After regime onset, Greenland blocking is associated with a suppression of wave activity flux, whereas Atlantic ridge and European blocking are associated with a northward deflection of the flux without a clear net change. During onset, the envelope of Rossby wave activity retracts upstream for Greenland blocking, whereas the envelope extends downstream for Atlantic ridge and European blocking. Scandinavian blocking exhibits intermediate wave activity characteristics. From the perspective of piecewise PV tendencies projected onto the respective regime pattern, the dynamics that govern regime onset exhibit a large degree of similarity: linear Rossby wave dynamics and nonlinear eddy PV fluxes dominate and are of approximately equal relative importance, whereas baroclinic coupling and divergent amplification make minor contributions. Most strikingly, all blocked regimes exhibit very similar (intra-regime) variability: a retrograde and an upstream pathway to regime onset. The retrograde pathway is dominated by nonlinear PV eddy fluxes, whereas the upstream pathway is dominated by linear Rossby wave dynamics. Importantly, there is a large degree of cancellation between the two pathways for some of the mechanisms before regime onset. The physical meaning of a regime-mean perspective before onset can thus be severely limited. Implications of our results for understanding predictability of blocked regimes are discussed. Further discussed are the limitations of projected tendencies in capturing the importance of moist-baroclinic growth, which tends to occur in regions where the amplitude of the regime pattern, and thus the projection onto it, is small. Finally, it is stressed that this study investigates the variability of the governing dynamics without prior empirical stratification of data by season or by type of regime transition. It is demonstrated, however, that our dynamics-centered approach does not merely reflect variability that is associated with these factors. The main modes of dynamical variability revealed herein and the large similarity of the blocked regimes in exhibiting this variability are thus significant results.
    Type of Medium: Online Resource
    ISSN: 2698-4016
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2982467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 146, No. 731 ( 2020-07), p. 2614-2633
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 146, No. 731 ( 2020-07), p. 2614-2633
    Abstract: The El Niño phase of the El Niño Southern Oscillation (ENSO) is typically associated with below‐average cool‐season rainfall in southeastern Australia (SEA). However, there is also large case‐to‐case variability on monthly time‐scales. Despite recent progress in understanding the links between remote climate drivers and this variability, the underlying dynamical processes are not fully understood. This reanalysis‐based study aims to advance the dynamical understanding by quantifying the contribution of midlatitude weather systems to monthly precipitation anomalies over SEA during the austral winter–spring season. A k‐means clustering reveals four rainfall anomaly patterns with above‐average rainfall (Cluster 1), below‐average rainfall (Cluster 2), above‐average rainfall along the East Coast (Cluster 3) and along the South Coast (Cluster 4). Cluster 2 occurs most frequently during El Niño, which highlights the general suppression of SEA rainfall during these events. However, the remaining three clusters with local above‐average rainfall are found in ∼52% of all El Niño months. Changes of weather system frequency determine the respective rainfall anomaly pattern. Results indicate significantly more cut‐off lows and warm conveyor belts (WCBs) over SEA in El Niño Cluster 1 and significantly fewer in El Niño Cluster 2. In El Niño Cluster 3, enhanced blocking south of Australia favours cut‐off lows leading to increased rainfall along the East Coast. Positive rainfall anomalies along the South Coast in El Niño Cluster 4 are associated with frontal rainfall due to an equatorward shift of the midlatitude storm track. Most of the rainfall is produced by WCBs and cut‐off lows but the contributions strongly vary between the clusters. In all clusters, rainfall anomalies result from changes in rainfall frequency more than in rainfall intensity. Backward trajectories of WCB and cut‐off low rainfall highlight the importance of moist air masses from the Coral Sea and the northwest coast of Australia during wet months.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...