GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 97, No. 12 ( 2016-12-01), p. 2305-2328
    Abstract: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 97, No. 10 ( 2016-10-01), p. 1859-1884
    Abstract: Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Geophysical Research Letters Vol. 49, No. 2 ( 2022-01-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 49, No. 2 ( 2022-01-28)
    Abstract: We estimate terms in the vertically integrated turbulent kinetic energy (TKE) equation from 10 months of mooring data, including TKE dissipation rates A conceptual framework is developed to separate the shallow wave‐affected layer from the mixed layer below Applying this framework to the TKE budget, we find that measured dissipation rates balance surface‐driven forcing to within a factor of two
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 10 ( 2021-10), p. E1936-E1951
    Abstract: In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST 〉 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s −1 ). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s −1 wind and evaporation of 0.2 mm h −1 . The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Physical Oceanography Vol. 39, No. 11 ( 2009-11-01), p. 2685-2710
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 39, No. 11 ( 2009-11-01), p. 2685-2710
    Abstract: The aqueous thermal boundary layer near to the ocean surface, or skin layer, has thickness O(1 mm) and plays an important role in controlling the exchange of heat between the atmosphere and the ocean. Theoretical arguments and experimental measurements are used to investigate the dynamics of the skin layer under the influence of an upwelling flow, which is imposed in addition to free convection below a cooled water surface. Previous theories of straining flow in the skin layer are considered and a simple extension of a surface straining model is posed to describe the combination of turbulence and an upwelling flow. An additional theory is also proposed, conceptually based on the buoyancy-driven instability of a laminar straining flow cooled from above. In all three theories considered two distinct regimes are observed for different values of the Péclet number, which characterizes the ratio of advection to diffusion within the skin layer. For large Péclet numbers, the upwelling flow dominates and increases the free surface temperature, or skin temperature, to follow the scaling expected for a laminar straining flow. For small Péclet numbers, it is shown that any flow that is steady or varies over long time scales produces only a small change in skin temperature by direct straining of the skin layer. Experimental measurements demonstrate that a strong upwelling flow increases the skin temperature and suggest that the mean change in skin temperature with Péclet number is consistent with the theoretical trends for large Péclet number flow. However, all of the models considered consistently underpredict the measured skin temperature, both with and without an upwelling flow, possibly a result of surfactant effects not included in the models.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Journal of Geophysical Research: Oceans Vol. 125, No. 12 ( 2020-12)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 125, No. 12 ( 2020-12)
    Abstract: Moored observations show large amplitude quasi‐biweekly variability of surface salinity in the north Bay of Bengal Mesoscale eddies and shallow wind‐driven monsoon currents lead to lateral dispersal of river water Shallow, fresh layer enhances sea surface temperature response to surface heat flux on subseasonal timescales
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, ( 2021-07-15)
    Abstract: Upper-ocean turbulence is central to the exchanges of heat, momentum, and gasses across the air/sea interface, and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed-layer depths and sea surface temperature. In part, progress has been limited due to the difficulty of measuring turbulence from fixed moorings which can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring Turbulent Kinetic Energy (TKE) dissipation rates, ϵ , from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-ocean Regional Study (SPURS) to collect two year-long data sets. We find the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate two-week missions for (10 −8 ) ≤ ϵ ≤ (10 −5 ) m 2 s −3 . Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1-10 km. We also find that dissipation estimates from two different moorings at 12.5 m, and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 39, No. 5 ( 2022-05), p. 595-617
    Abstract: The future Surface Water and Ocean Topography (SWOT) mission aims to map sea surface height (SSH) in wide swaths with an unprecedented spatial resolution and subcentimeter accuracy. The instrument performance needs to be verified using independent measurements in a process known as calibration and validation (Cal/Val). The SWOT Cal/Val needs in situ measurements that can make synoptic observations of SSH field over an O (100) km distance with an accuracy matching the SWOT requirements specified in terms of the along-track wavenumber spectrum of SSH error. No existing in situ observing system has been demonstrated to meet this challenge. A field campaign was conducted during September 2019–January 2020 to assess the potential of various instruments and platforms to meet the SWOT Cal/Val requirement. These instruments include two GPS buoys, two bottom pressure recorders (BPR), three moorings with fixed conductivity–temperature–depth (CTD) and CTD profilers, and a glider. The observations demonstrated that 1) the SSH (hydrostatic) equation can be closed with 1–3 cm RMS residual using BPR, CTD mooring and GPS SSH, and 2) using the upper-ocean steric height derived from CTD moorings enable subcentimeter accuracy in the California Current region during the 2019/20 winter. Given that the three moorings are separated at 10–20–30 km distance, the observations provide valuable information about the small-scale SSH variability associated with the ocean circulation at frequencies ranging from hourly to monthly in the region. The combined analysis sheds light on the design of the SWOT mission postlaunch Cal/Val field campaign.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 122, No. 10 ( 2017-10), p. 7803-7821
    Abstract: Two high‐resolution ocean models compare well against data in frequency spectral density of dynamic height Sea surface height frequency‐horizontal wavenumber spectral densities show high variance along internal gravity wave dispersion curves Two high‐resolution ocean models give different estimates of variance in high‐frequency, high wavenumber phenomena
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Geophysical Research Letters Vol. 50, No. 10 ( 2023-05-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 50, No. 10 ( 2023-05-28)
    Abstract: Based on observations and large eddy simulation (LES), we examine diurnal warm layer (DWL) depths for moderate wind conditions with swell Based on LES results, we develop a unified scaling for the minimum DWL depth considering shear and wave‐driven Langmuir turbulence (LT) Observed DWL depths are consistent with LES results that include LT indicating the importance of wave‐driven turbulence on DWL dynamics
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...