GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2023
    In:  Antarctic Science Vol. 35, No. 1 ( 2023-02), p. 31-42
    In: Antarctic Science, Cambridge University Press (CUP), Vol. 35, No. 1 ( 2023-02), p. 31-42
    Abstract: Ross seals ( Ommatophoca rossii ) travel away from the pack ice and spend most of their year foraging pelagically. Here, we augment the few existing records of Ross seal diving and haul-out behaviour, providing novel insights into how these are influenced diurnally and seasonally. We used biologging devices that recorded the dive behaviour ( n = 5) and/or haul-out behaviour ( n = 9) of Ross seals in the eastern Weddell Sea (2016–2019). Ross seals mostly dived between 100 and 200 m deep, often 〉 300 m, and for 5–12 min in duration, often 〉 20 min. During March–July, when Ross seals forage pelagically, diving metrics varied diurnally. The seals dived deeper during twilight and shallowest at night, while the number of dives and diving duration did not follow a clear diurnal pattern. Consequently, diving effort was highest during the night. Ross seals preferentially hauled out in the middle of the day during September, October, February and December, but not during the rest of the year. Three females that entered the pack ice during breeding season were hauled out continuously for 5–7 days, punctuated by water entries for 1–3 h during and/or after such continuous haul-outs over the breeding season. This behaviour might suggest that Ross seals alternate between capital and facultative income breeding.
    Type of Medium: Online Resource
    ISSN: 0954-1020 , 1365-2079
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2104104-0
    detail.hit.zdb_id: 1009128-2
    SSG: 12
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-5-13)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-5-13)
    Abstract: Understanding the determinants of poorly studied species’ spatial ecology is fundamental to understanding climate change impacts on those species and how to effectively prioritise their conservation. Ross seals ( Ommatophoca rossii ) are the least studied of the Antarctic pinnipeds with a limited knowledge of their spatial ecology. We present the largest tracking study for this species to date, create the first habitat models, and discuss the potential impacts of climate change on their preferred habitat and the implications for conservation. We combined newly collected satellite tracking data (2016–2019: n = 11) with previously published data (2001: n = 8) from the Weddell, King Haakon VII and Lazarev seas, Antarctica, and used 16 remotely sensed environmental variables to model Ross seal habitat suitability by means of boosted regression trees for summer and winter, respectively. Five of the top environmental predictors were relevant in both summer and winter (sea-surface temperature, distance to the ice edge, ice concentration standard deviation, mixed-layer depth, and sea-surface height anomalies). Ross seals preferred to forage in waters ranging between −1 and 2°C, where the mixed-layer depth was shallower in summer and deeper in winter, where current speeds were slower, and away from the ice edge in the open ocean. Receding ice edge and shoaling of the mixed layer induced by climate change may reduce swimming distances and diving depths, thereby reducing foraging costs. However, predicted increased current speeds and sea-surface temperatures may reduce habitat suitability in these regions. We suggest that the response of Ross seals to climate change will be regionally specific, their future success will ultimately depend on how their prey responds to regional climate effects and their own behavioural plasticity.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...