GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 8 ( 2020-04-15), p. 3253-3269
    Kurzfassung: The climate of high midlatitude mountains appears to be warming faster than the global average, but evidence for such elevation-dependent warming (EDW) at higher latitudes is presently scarce. Here, we use a comprehensive network of remote meteorological stations, proximal radiosonde measurements, downscaled temperature reanalysis, ice cores, and climate indices to investigate the manifestation and possible drivers of EDW in the St. Elias Mountains in subarctic Yukon, Canada. Linear trend analysis of comprehensively validated annual downscaled North American Regional Reanalysis (NARR) gridded surface air temperatures for the years 1979–2016 indicates a warming rate of 0.028°C a −1 between 5500 and 6000 m above mean sea level (MSL), which is ~1.6 times larger than the global-average warming rate between 1970 and 2015. The warming rate between 5500 and 6000 m MSL was ~1.5 times greater than the rate at the 2000–2500 m MSL bin (0.019°C a −1 ), which is similar to the majority of warming rates estimated worldwide over similar elevation gradients. Accelerated warming since 1979, measured by radiosondes, indicates a maximum rate at 400 hPa (~7010 m MSL). EDW in the St. Elias region therefore appears to be driven by recent warming of the free troposphere. MODIS satellite data show no evidence for an enhanced snow albedo feedback above 2500 m MSL, and declining trends in sulfate aerosols deposited in high-elevation ice cores suggest a modest increase in radiative forcing at these elevations. In contrast, increasing trends in water vapor mixing ratio at the 500-hPa level measured by radiosonde suggest that a longwave radiation vapor feedback is contributing to EDW.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2020
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 12 ( 2013-06-15), p. 4282-4303
    Kurzfassung: A method is described to estimate the thickness of glacier ice using information derived from the measured ice extent, surface topography, surface mass balance, and rate of thinning or thickening of the ice column. Shear stress beneath an ice column is assumed to be simply related to ice thickness and surface slope, as for an inclined slab, but this calculation is cast as a linear optimization problem so that a smoothness regularization can be applied. Assignment of bed stress is based on the flow law for ice and a mass balance calculation but must be preceded by delineation of the ice flow drainage basin. Validation of the method is accomplished by comparing thickness estimates to the known thickness generated by a numerical ice dynamics model. Once validated, the method is used to estimate the subglacial topography for all glaciers in western Canada that lie south of 60°N. Adding the present ice volume of each glacier gives the estimated total volume as 2320 km3, equivalent to 5.8 mm of sea level rise. Taking the glaciated area as 26 590 km2 gives the average glacier thickness as 87.2 m. A detailed error analysis indicates that systematic errors are likely to increase the estimated sea level rise and when random errors are included the combined result is 6.3 ± 0.6 mm or, expressed as ice volume, 2530 ± 220 km3.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2013
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...