GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry/Pharmacy  (7)
  • 1
    Online Resource
    Online Resource
    Annual Reviews ; 2014
    In:  Annual Review of Pharmacology and Toxicology Vol. 54, No. 1 ( 2014-01-06), p. 227-249
    In: Annual Review of Pharmacology and Toxicology, Annual Reviews, Vol. 54, No. 1 ( 2014-01-06), p. 227-249
    Abstract: G protein–coupled receptors (GPCRs) mediate the majority of cellular responses to hormones and neurotransmitters within the human body. They have much potential in the emerging field of synthetic biology, which is the rational, systematic design of biological systems with desired functionality. The responsiveness of GPCRs to a plethora of endogenous and exogenous ligands and stimuli make them ideal sensory receptor modules of synthetic gene networks. Such networks can activate target gene expression in response to a specific stimulus. Additionally, because GPCRs are important pharmacological targets of various human diseases, genes encoding their protein/peptide ligands can also be incorporated as target genes of the response output elements of synthetic gene networks. This review aims to critically examine the potential role of GPCRs in constructing therapeutic synthetic gene networks and to discuss various challenges in utilizing GPCRs for synthetic biology applications.
    Type of Medium: Online Resource
    ISSN: 0362-1642 , 1545-4304
    URL: Issue
    RVK:
    Language: English
    Publisher: Annual Reviews
    Publication Date: 2014
    detail.hit.zdb_id: 1474461-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Angewandte Chemie Vol. 127, No. 20 ( 2015-05-11), p. 6031-6036
    In: Angewandte Chemie, Wiley, Vol. 127, No. 20 ( 2015-05-11), p. 6031-6036
    Abstract: Precise spatiotemporal control of physiological processes by optogenetic devices inspired by synthetic biology may provide novel treatment opportunities for gene‐ and cell‐based therapies. An erectile optogenetic stimulator (EROS), a synthetic designer guanylate cyclase producing a blue‐light‐inducible surge of the second messenger cyclic guanosine monophosphate (cGMP) in mammalian cells, enabled blue‐light‐dependent penile erection associated with occasional ejaculation after illumination of EROS‐transfected corpus cavernosum in male rats. Photostimulated short‐circuiting of complex psychological, neural, vascular, and endocrine factors to stimulate penile erection in the absence of sexual arousal may foster novel advances in the treatment of erectile dysfunction.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: German
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Angewandte Chemie International Edition Vol. 54, No. 20 ( 2015-05-11), p. 5933-5938
    In: Angewandte Chemie International Edition, Wiley, Vol. 54, No. 20 ( 2015-05-11), p. 5933-5938
    Type of Medium: Online Resource
    ISSN: 1433-7851
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Angewandte Chemie International Edition Vol. 56, No. 23 ( 2017-06), p. 6396-6419
    In: Angewandte Chemie International Edition, Wiley, Vol. 56, No. 23 ( 2017-06), p. 6396-6419
    Abstract: Synthetic biology concerns the engineering of man‐made living biomachines from standardized components that can perform predefined functions in a (self‐)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The “top‐down” strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application‐driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the “bottom‐up” strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge‐driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self‐organization, self‐replication, and self‐sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: ChemBioChem, Wiley
    Abstract: Synthetic or natural small molecules have been extensively employed as trigger signals or inducers to regulate engineered gene circuits introduced into living cells in order to obtain desired outputs in a controlled and predictable manner. Here, we provide an overview of small molecules used to drive synthetic‐biology‐based gene circuits in mammalian cells, together with examples of applications at different levels of control, including regulation of DNA manipulation, RNA synthesis and editing, and protein synthesis, maturation, and trafficking. We also discuss the therapeutic potential of these small‐molecule‐responsive gene circuits, focusing on the advantages and disadvantages of using small molecules as triggers, the mechanisms involved, and the requirements for selecting suitable molecules, including efficiency, specificity, orthogonality, and safety. Finally, we explore potential future directions for translation of these devices to clinical medicine.
    Type of Medium: Online Resource
    ISSN: 1439-4227 , 1439-7633
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2020469-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  ChemBioChem Vol. 20, No. 8 ( 2019-04-15), p. 994-1002
    In: ChemBioChem, Wiley, Vol. 20, No. 8 ( 2019-04-15), p. 994-1002
    Abstract: Cell‐to‐cell communication plays a key role in the regulation of many natural biological processes. Recent advances in mammalian synthetic biology are making it possible to rationally engineer cell‐to‐cell communication for therapeutic and other purposes. Here, we review state‐of‐the‐art engineering principles to control cell‐to‐cell communication, focusing on communication between mammalian cells with diffusible factors (e.g., small molecules or exosomes) or direct cell contact, and on interkingdom communication between mammalian cells and bacteria. Potential applications include construction of artificial tissues able to perform complex computations, sophisticated cell‐based cancer therapies, use of mammalian cells as a new class of cargo delivery modality, development of design principles to control pattern formation of cell populations, and treatment of infectious diseases. We also discuss the challenges facing practical applications, and possible enabling technologies to overcome them.
    Type of Medium: Online Resource
    ISSN: 1439-4227 , 1439-7633
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020469-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Angewandte Chemie Vol. 129, No. 23 ( 2017-06), p. 6494-6519
    In: Angewandte Chemie, Wiley, Vol. 129, No. 23 ( 2017-06), p. 6494-6519
    Abstract: Die synthetische Biologie befasst sich mit der gezielten Konstruktion von lebenden Biomaschinen aus standardisierten Komponenten, die vordefinierte Aufgaben in einer (selbst‐)kontrollierten Weise ausführen können. Unterschiedliche Forschungsstrategien und interdisziplinäre Ansätze werden verfolgt, um technische Prinzipien in die Biologie zu implementieren. Die “top‐down”‐Strategie greift auf die enorme Diversität der Natur zurück, um natürliche Komponenten künstlich in genetischen, metabolischen oder signalweiterleitenden Netzwerken mit vorhersehbaren und kontrollierbaren Eigenschaften zusammenzuführen. Dieser hauptsächlich von der Anwendung her gedachte Ansatz bringt lebende Fabriken hervor, die Wirkstoffe, Treibstoffe, Biomaterialien und Feinchemikalien produzieren. Man bekommt lebende Pillen an die Hand, bestehend aus konstruierten Zellen mit der Fähigkeit, Krankheiten in vivo autonom zu entdecken und zu behandeln. Im Gegensatz dazu versucht man in der “bottom‐up”‐Strategie, sich von bestehenden lebenden Systemen unabhängig zu machen und biologische Systeme von Grund auf neu zu entwerfen. So sollen künstliche biologische Gebilde synthetisiert werden, die es in der Natur nicht gibt. Dieser eher wissensgetriebene Ansatz untersucht die Rekonstruktion minimaler biologischer Systeme, die grundlegende biologische Phänomene wie Selbstorganisation, Selbstreplikation und Selbsterhaltung hervorbringen können. Die Synthese künstlicher biologischer Einheiten wie synthetischer Nucleotide oder Aminosäuren und ihr Einbau in Polymere im Inneren lebender Zellen stellt gegenwärtig die Grenze zwischen natürlichen und künstlichen biologischen Systemen dar. Insbesondere Entwurf und Synthese ganzer Genome in vitro und ihre Übertragung in Wirtzellen sowie die Anwendung effizienter genomweiter Manipulationstechniken deuten auf die Zukunft der synthetischen Biologie: die Erschaffung lebender Designerzellen mit maßgeschneiderten erwünschten Eigenschaften für Biomedizin und Biotechnologie.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...