GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General works  (1)
Material
Publisher
Language
Years
Subjects(RVK)
  • General works  (1)
RVK
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2018
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 376, No. 2130 ( 2018-10-13), p. 20170072-
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 376, No. 2130 ( 2018-10-13), p. 20170072-
    Abstract: Geologically abrupt carbon perturbations such as the Palaeocene–Eocene Thermal Maximum (PETM, approx. 56 Ma) are the closest geological points of comparison to current anthropogenic carbon emissions. Associated with the rapid carbon release during this event are profound environmental changes in the oceans including warming, deoxygenation and acidification. To evaluate the global extent of surface ocean acidification during the PETM, we present a compilation of new and published surface ocean carbonate chemistry and pH reconstructions from various palaeoceanographic settings. We use boron to calcium ratios (B/Ca) and boron isotopes (δ 11 B) in surface- and thermocline-dwelling planktonic foraminifera to reconstruct ocean carbonate chemistry and pH. Our records exhibit a B/Ca reduction of 30–40% and a δ 11 B decline of 1.0–1.2‰ coeval with the carbon isotope excursion. The tight coupling between boron proxies and carbon isotope records is consistent with the interpretation that oceanic absorption of the carbon released at the onset of the PETM resulted in widespread surface ocean acidification. The remarkable similarity among records from different ocean regions suggests that the degree of ocean carbonate change was globally near uniform. We attribute the global extent of surface ocean acidification to elevated atmospheric carbon dioxide levels during the main phase of the PETM. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2018
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...