GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • OceanRep  (2)
Publikationsart
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019-01-08
    Beschreibung: The Lagrangian analysis of sets of particles advected with the flow fields of ocean models is used to study connectivity, that is, exchange pathways, time scales, and volume transports, between distinct oceanic regions. One important factor influencing the dispersion of fluid particles and, hence, connectivity is the Lagrangian eddy diffusivity, which quantifies the influence of turbulent processes on the rate of particle dispersal. Because of spatial and temporal discretization, turbulence is not fully resolved in modeled velocities, and the concept of eddy diffusivity is used to parameterize the impact of unresolved processes. However, the relations between observation- and model-based Lagrangian eddy diffusivity estimates, as well as eddy parameterizations, are not clear. This study presents an analysis of the spatially variable near-surface lateral eddy diffusivity estimates obtained from Lagrangian trajectories simulated with 5-day mean velocities from an eddy-resolving ocean model (INALT01) for the Agulhas system. INALT01 features diffusive regimes for dynamically different regions, some of which exhibit strong suppression of eddy mixing by mean flow, and it is consistent with the pattern and magnitude of drifter-based eddy diffusivity estimates. Using monthly mean velocities decreases the estimated diffusivities less than eddy kinetic energy, supporting the idea that large and persistent eddy features dominate eddy diffusivities. For a noneddying ocean model (ORCA05), Lagrangian eddy diffusivities are greatly reduced, particularly when the Gent and McWilliams parameterization of mesoscale eddies is employed.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-01-31
    Beschreibung: The Lagrangian analysis of sets of particles advected with the flow fields of ocean models are used to study connectivity, i.e. exchange pathways, timescales and volume transports, between distinct oceanic regions. One important factor influencing the dispersion of fluid particles and hence connectivity is the Lagrangian eddy diffusivity, which quantifies the influence of turbulent processes on the rate of particle dispersal. Due to spatial and temporal discretization, turbulence is not fully resolved in modelled velocities, and the concept of eddy diffusivity is used to parametrize the impact of unresolved processes. However, the relations between observational- and model-based Lagrangian eddy diffusivity estimates as well as eddy parameterizations are not clear. This study presents an analysis of the spatially variable near-surface lateral eddy diffusivity estimates obtained from Lagrangian trajectories simulated with 5-day mean velocities from an eddy-resolving ocean model (INALT01) for the Agulhas system. INALT01 features diffusive regimes for dynamically different regions, some of which exhibit strong suppression of eddy mixing by mean flow, and is consistent with the pattern and magnitude of drifter-based eddy diffusivity estimates. Using monthly-mean velocities decreases the estimated diffusivities less than eddy kinetic energy, supporting the idea that large and persistent eddy features dominate eddy diffusivities. For a non-eddying ocean model (ORCA05), Lagrangian eddy diffusivities are greatly reduced, in particular when the Gent and McWilliams parameterization of mesoscale eddies is employed.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...