GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-16
    Description: Statolith microstructure was studied in hatchlings of deepwater-spawned gonatid squid Gonatus onyx, caught between 1350 and 1420 m over a bottom depth of 2100 m in the San Clemente Basin off San Diego, California. It was found that the shape and size of the hatchling statolith were similar to those of the first-check statolith observed in paralarvae and small juveniles of G.onyx. The inner part of the bipartite postnuclear zone (= first-check statolith) is formed during late embryo-genesis, and the first check within the statolith microstructure must be considered as a starting point of increment counting for age estimation of Gonatus
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Company of Biologists
    In:  Journal of Experimental Biology, 201 (16). pp. 2413-2424.
    Publication Date: 2021-06-15
    Description: Vampyroteuthis infernalis is a cosmopolitan cephalopod that lives in the oxygen minimum layer between 600 and 800 m depth. Morphometric and physiological studies have indicated that V. infernalis has little capacity for jet propulsion and has the lowest metabolic rate ever measured for a cephalopod. Because fin swimming is inherently more efficient than jet propulsion, some of the reduction in energy usage relative to other cephalopods may result from the use of fins as the primary means of propulsion. V. infernalis undergoes a rapid metamorphosis which consists of changes in the position, size and shape of the fins. This suggests that there are changes in the selective factors affecting locomotion through ontogeny. The present study describes these changes in relation to models for underwater 'flight'. Citrate synthase (CS) and octopine dehydrogenase (ODH) activities, indicative of aerobic and anaerobic metabolism, respectively, were measured in fin, mantle and arm tissue across a range of body size of four orders of magnitude. The low enzymatic activities in both posterior and anterior fin tissue and the relatively high activity in mantle muscle prior to metamorphosis indicate that jet propulsion using mantle contraction is the primary means of propulsion in juvenile V. infernalis. The increase in CS activity with size after metamorphosis suggests an increased use of the fins for lift-based propulsion. Fin swimming appears to be the primary means of propulsion at all adult sizes. The negative allometry of CS activity in mantle and arm muscle is consistent with the scaling of oxygen consumption previously measured for V. infernalis and with the scaling of aerobic metabolism observed in most animals. The unusual positive allometry of fin muscle CS activity suggests that the use of fins is either relatively more important or more costly in larger animals. Positive scaling of ODH activity in all tissues suggests that fin propulsion, jet propulsion and medusoid 'bell-swimming' are all important for burst escape responses. Enzyme activities in Cirrothauma murrayi are consistent with fin-swimming observed from submersibles, while those in Opisthoteuthis californiana suggest a strong reliance on medusoid swimming using the arms. The transition from jet propulsion to paired-fin 'flight' with increasing body size in Vampyroteuthis infernalis appears functionally to be an ontogenetic 'gait-transition'.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 47 (7). pp. 1247-1260.
    Publication Date: 2021-06-25
    Description: The oxygen consumption rates and activities of key metabolic enzymes were measured and analyzed as a function of habitat depth for several species of benthic octopod (Cephalopoda: Octopoda) including a recently described hydrothermal vent endemic species. Oxygen consumption rates and citrate synthase activity, an indicator of aerobic metabolic potential, did not vary significantly with increasing habitat depth. Anaerobic metabolic potential, as evidenced by octopine dehydrogenase activity, declined significantly with increasing habitat depth. It is suggested that burst swimming abilities, and hence glycolytic potential, are not strongly selected for in the deep-sea, where visual predator-prey interactions are reduced because of light-limitation. Oxygen consumption rates for Octopus californicus and O. bimaculoides were analyzed as a function of oxygen partial pressure as well. O. californicus, which lives in the hypoxic Santa Barbara basin at 500 m depth, was able to regulate its oxygen consumption to the limit of detectable oxygen partial pressures. O. bimaculoides, an intertidal species, had a minimum critical oxygen partial pressure of 16 mmHg. It is also shown that oxygen consumption rates and oxygen consumption regulation are strongly affected by individual experiment duration (either handling stress or food deprivation). O. californicus appears to be much more strongly affected by experiment duration than is O. bimaculoides.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-25
    Description: The present study attempts to correlate the metabolism and locomotory behavior of 25 species of midwater Cephalopoda from California and Hawaii with the maximal activities of key metabolic enzymes in various locomotory muscle tissues. Citrate synthase (CS) and octopine dehydrogenase (ODH) activities were used as indicators of aerobic and anaerobic metabolic potential respectively. CS activity in mantle muscle is highly correlated with whole-animal rates of oxygen consumption, whereas ODH activity in mantle muscle is significantly correlated with a species' ability to buffer the acidic end-products of anaerobic metabolism. Both CS and ODH activities in mantle muscle declined strongly with a species' habitat depth. For example, CS and ODH activities ranged respectively from 0.04 units g- 1 and 0.03 units g- 1 in the deep-living squid Joubiniteuthis portieri, to 8.13 units g- 1 and 420 units g - l in the epipelagic squid Sthenoteuthis oualaniensis. The relationships between enzymatic activities and depth are consistent with similar patterns observed for whole-animal oxygen consumption. This pattern is believed to result from a relaxation, among deep-living species, in the need for strong locomotory abilities for visual predator/prey interactions; the relaxation is due to light-limitation in the deep sea. Intraspecific scaling patterns for ODH activities may, for species that migrate ontogenetically to great depths, reflect the counteracting effects of body size and light on predatorprey detection distances. When scaled allometrically, enzymatic activities for the giant squid, Architeuthis sp., suggest a fairly active aerobic metabolism but little burst swimming capacity. Interspecific differences in the relative distributions of enzymatic activities in fin, mantle, and arm tissue suggest an increased reliance on fin and arm muscle for locomotion among deep-living species. We suggest that, where high-speed locomotion is not required, more efficient means of locomotion, such as fin swimming or medusoid arm propulsion, are more prevalent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-05
    Description: The functional properties of the haemocyanin ofVampyroteuthis infernalis (Cephalopoda: Vampyromorpha), measured at 5 °C, are reported and discussed in relation to hypoxia. The oxygen affinity of this haemocyanin (P50=0.47−0.55 kPa) is higher than any previously measured for a cephalopod. The high cooperativity (n50=2.20−2.23) and Bohr coefficient (−0.22) suggest a true transport function for this haemocyanin. This high-affinity haemocyanin, in conjunction with moderate gill diffusion capacity, provides a sufficient oxygen gradient from the environment to the blood to support the low routine oxygen consumption rate of V. infernalis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Oxford University Press
    In:  ICES Journal of Marine Science, 67 (7). pp. 1494-1500.
    Publication Date: 2021-08-25
    Description: The metabolic demands of a rare paper nautilus, Argonauta nouryi, in the eastern tropical Pacific (ETP) are evaluated. After adjusting for temperature and size, the rates of oxygen consumption and of aerobic and anaerobic metabolic potential (as evidenced by citrate synthase and octopine dehydrogenase activities, respectively) of A. nouryi were much higher than those in holopelagic octopods that exhibit float-and-wait predation strategies. In fact, the rates were similar to those found in small epipelagic squids and benthic octopods. The critical oxygen partial pressure was 4.9 kPa at 20°C, suggesting that the strong oxygen minimum layer found at intermediate depths in the ETP may constrain the vertical distribution of A. nouryi to the upper few metres of the water column. We also report the occurrence of a chain of shelled females at the surface, in which each animal was attached, as if on the benthos, to the next individual in the chain. Although it may constitute an effective strategy to increase the rates of mate encounter in the vast open ocean, there may be an important ecological trade-off for such behaviour, namely the increase in visibility at the surface with concomitant attraction of predators.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: In the last few decades, numerous studies have investigated the impacts of simulated ocean acidification on marine species and communities, particularly those inhabiting dynamic coastal systems. Despite these research efforts, there are many gaps in our understanding, particularly with respect to physiological mechanisms that lead to pathologies. In this review, we trace how carbonate system disturbances propagate from the coastal environment into marine invertebrates and highlight mechanistic links between these disturbances and organism function. We also point toward several processes related to basic invertebrate biology that are severely understudied and prevent an accurate understanding of how carbonate system dynamics influence organismic homeostasis and fitness-related traits. We recommend that significant research effort be directed to studying cellular phenotypes of invertebrates acclimated or adapted to elevated seawater pCO2 using biochemical and physiological methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 438 (7070). p. 929.
    Publication Date: 2021-08-20
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...