GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (3)
Document type
Years
  • 1
    Publication Date: 2024-02-07
    Description: Marine diazotrophs convert dinitrogen (N-2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N-2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N-2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N-2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43-57 versus 45-63 TgNyr (-1); ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223 +/- 30 TgNyr (-1) (mean +/- standard error; same hereafter) compared to version 1 (74 +/- 7 TgNyr (-1)). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88 +/- 23 versus 20 +/- 2 TgNyr 1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40 +/- 9 versus 10 +/- 2 TgNyr (-1)). Moreover, version 2 estimates the N-2 fixation rate in the Indian Ocean to be 35 +/- 14 TgNyr (-1), which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N-2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional N-15(2) bubble method yields lower rates in 69% cases compared to the new N-15(2) dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: In the marine realm, microorganisms are responsible for the bulk of primary production, thereby sustaining marine life across all trophic levels. Longhurst provinces have distinct microbial fingerprints; however, little is known about how microbial diversity and primary productivity change at finer spatial scales. Here, we sampled the Atlantic Ocean from south to north (~50°S–50°N), every ~0.5° latitude. We conducted measurements of primary productivity, chlorophyll-a and relative abundance of 16S and 18S rRNA genes, alongside analyses of the physicochemical and hydrographic environment. We analysed the diversity of autotrophs, mixotrophs and heterotrophs, and noted distinct patterns among these guilds across provinces with high and low chlorophyll-a conditions. Eukaryotic autotrophs and prokaryotic heterotrophs showed a shared inter-province diversity pattern, distinct from the diversity pattern shared by mixotrophs, cyanobacteria and eukaryotic heterotrophs. Additionally, we calculated samplewise productivity-specific length scales, the potential horizontal displacement of microbial communities by surface currents to an intrinsic biological rate (here, specific primary productivity). This scale provides key context for our trophically disaggregated diversity analysis that we could relate to underlying oceanographic features. We integrate this element to provide more nuanced insights into the mosaic-like nature of microbial provincialism, linking diversity patterns to oceanographic transport through primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Biogeochemical cycling of carbon (C) and nitrogen (N) in the ocean depends on both the composition and activity of underlying biological communities and on abiotic factors. The Southern Ocean is encircled by a series of strong currents and fronts, providing a barrier to microbial dispersion into adjacent oligotrophic gyres. Our study region straddles the boundary between the nutrient-rich Southern Ocean and the adjacent oligotrophic gyre of the South Indian Ocean, providing an ideal region to study changes in microbial productivity. Here, we measured the impact of C- and N- uptake on microbial community diversity, contextualized by hydrographic factors and local physico-chemical conditions across the Southern Ocean and South Indian Ocean. We observed that contrasting physico-chemical characteristics led to unique microbial diversity patterns, with significant correlations between microbial alpha diversity and primary productivity (PP). However, we detected no link between specific PP (PP normalized by chlorophyll a concentration) and microbial alpha and beta diversity. Prokaryotic alpha and beta diversity were correlated with biological N2 fixation, itself a prokaryotic process, and we detected measurable N2 fixation to 60° S. While regional water masses have distinct microbial genetic fingerprints in both the eukaryotic and prokaryotic fractions, PP and N2 fixation vary more gradually and regionally. This suggests that microbial phylogenetic diversity is more strongly bounded by physical oceanographic features, while microbial activity responds more to chemical factors. We conclude that concomitant assessments of microbial diversity and activity is central in understanding the dynamics and complex responses of microorganisms to a changing ocean environment.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...