GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-19
    Description: The ever increasing impact of the marine industry and transport on vulnerable sea areas puts the marine environment under exceptional pressure and calls for inspired methods for mitigating the impact of the related risks. We describe a method for preventive reduction of remote environmental risks caused by the shipping and maritime industry that are transported by surface currents and wind impact to the coasts. This method is based on characterizing systematically the damaging potential of the offshore areas in terms of potential transport to vulnerable regions of an oil spill or other pollution that has occurred in a particular area. The resulting maps of probabilities of pollution to be transported to the nearshore and the time it takes for the pollution to reach the nearshore are used to design environmentally optimized fairways for the Gulf of Finland, Baltic Proper, and south-western Baltic Sea
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-26
    Description: Highlights • A new description of sediment phosphorus dynamics was implemented in a 3D-model. • Oxygen consumption affects oxygen penetration in coastal sediments. • Low oxygen concentrations determine the oxygen penetration in deeper water sediments. • More than 80% of the phosphorus loads (1980–2008) are retained in the Baltic Sea. • Phosphorus is released from anoxic sediments and retained in oxic sediments. Abstract The new approach to model the oxygen dependent phosphate release by implementing formulations of the oxygen penetration depths (OPD) and mineral bound inorganic phosphorus pools to the Swedish Coastal and Ocean Biogeochemical model (SCOBI) is described. The phosphorus dynamics and the oxygen concentrations in the Baltic proper sediment are studied during the period 1980–2008 using SCOBI coupled to the 3D-Rossby Centre Ocean model. Model data are compared to observations from monitoring stations and experiments. The impact from oxygen consumption on the determination of the OPD is found to be largest in the coastal zones where also the largest OPD are found. In the deep water the low oxygen concentrations mainly determine the OPD. Highest modelled release rate of phosphate from the sediment is about 59 × 103 t P year− 1 and is found on anoxic sediment at depths between 60–150 m, corresponding to 17% of the Baltic proper total area. The deposition of organic and inorganic phosphorus on sediments with oxic bottom water is larger than the release of phosphorus, about 43 × 103 t P year− 1. For anoxic bottoms the release of total phosphorus during the investigated period is larger than the deposition, about 19 × 103 t P year− 1. In total the net Baltic proper sediment sink is about 23.7 × 103 t P year− 1. The estimated phosphorus sink efficiency of the entire Baltic Sea is on average about 83% during the period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-26
    Description: Climate model results for the Baltic Sea region from an ensemble of eight simulations using the Rossby Centre Atmosphere model version 3 (RCA3) driven with lateral boundary data from global climate models (GCMs) are compared with results from a downscaled ERA40 simulation and gridded observations from 1980-2006. The results showed that data from RCA3 scenario simulations should not be used as forcing for Baltic Sea models in climate change impact studies because biases of the control climate significantly affect the simulated changes of future projections. For instance, biases of the sea ice cover in RCA3 in the present climate affect the sensitivity of the model's response to changing climate due to the ice-albedo feedback. From the large ensemble of available RCA3 scenario simulations two GCMs with good performance in downscaling experiments during the control period 1980-2006 were selected. In this study, only the quality of atmospheric surface fields over the Baltic Sea was chosen as a selection criterion. For the greenhouse gas emission scenario A1B two transient simulations for 1961-2100 driven by these two GCMs were performed using the regional, fully coupled atmosphere-ice-ocean model RCAO. It was shown that RCAO has the potential to improve the results in downscaling experiments driven by GCMs considerably, because sea surface temperatures and sea ice concentrations are calculated more realistically with RCAO than when RCA3 has been forced with surface boundary data from GCMs. For instance, the seasonal 2 m air temperature cycle is closer to observations in RCAO than in RCA3 downscaling simulations. However, the parameterizations of air-sea fluxes in RCAO need to be improved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  Tellus A: Dynamic meteorology and oceanography, 66 . p. 23985.
    Publication Date: 2019-09-23
    Description: The impact of dense saltwater inflows on the phosphorus dynamics in the Baltic Sea is studied from tracer experiments with a three-dimensional physical model. Model simulations showed that the coasts of the North West Gotland Basin and the Gulf of Finland, the Estonian coast in the East Gotland Basin are regions where tracers from below the halocline are primarily lifted up above the halocline. After 1 yr tracers are accumulated at the surface along the Swedish east coast and at the western and southern sides of Gotland. Elevated concentrations are also found east and southeast of Gotland, in the northern Bornholm Basin and in the central parts of the East Gotland Basin. The annual supplies of phosphorus from the deeper waters to the productive surface layers are estimated to be of the same order of magnitude as the waterborne inputs of phosphorus to the entire Baltic Sea. The model results suggest that regionally the impact of these nutrients may be quite large, and the largest regional increases in surface concentrations are found after large inflows. However, the overall direct impact of major Baltic inflows on the annual uplift of nutrients from below the halocline to the surface waters is small because vertical transports are comparably large also during periods without major inflows. Our model results suggest that phosphorus released from the sediments between 60 and 100 m depth in the East Gotland Basin contributes to the eutrophication, especially in the coastal regions of the eastern Baltic Proper.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 117 pp . Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, 284 . DOI 10.3289/ifm_ber_284 〈http://dx.doi.org/10.3289/ifm_ber_284〉.
    Publication Date: 2016-06-23
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-11
    Description: The Baltic Sea is a dynamic environment responding to various drivers operating at different temporal and spatial scales. In response to climate change, the Baltic Sea is warming and the frequency of extreme climatic events is increasing (Lima & Wethey 2012, BACC 2008, Poloczanska et al. 2007). Coastal development, human population growth and globalization intensify stressors associated with human activities, such as nutrient loading, fisheries and proliferation of invasive and bloom-forming species. Such abrupt changes have unforeseen consequences for the biodiversity and the function of food webs and may result in loss of ecological key species, alteration and fragmentation of habitats. To mitigate undesired effects on the Baltic ecosystem, an efficient marine management will depend on the understanding of historical and current drivers, i.e. physical and chemical environmental conditions and human activities that precipitate pressures on the natural environment. This task examined a set of key interactions of selected natural and anthropogenic drivers in space and time, identified in Task 3.1 as well as WP1 and WP2 (e.g. physico-chemical features vs climate forcing; eutrophication vs oxygen deficiency vs bio-invasions; fisheries vs climate change impacts) by using overlay-mapping and sensitivity analyses. The benthic ecosystem models developed under Task 2.1 were used to investigate interactions between sea temperature and eutrophication for various depth strata in coastal (P9) and offshore areas (P1) of the Baltic Sea. This also included investigation on how the frequency and magnitude of deep-water inflow events determines volume and variance of salinity and temperature under the halocline, deep-water oxygen levels and sediment fluxes of nutrients, using observations and model results from 1850 to present (P1, P2, P6, P9, P12). The resulting synthesis on the nature and magnitude of different driver interactions will feed into all other tasks of this WP3 and WP2/WP4. Moreover, the results presented in this report improve the process-based and mechanistic understanding of environmental change in the Baltic Sea ecosystem, thereby fostering the implementation of the Marine Strategy Framework Directive.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Oxford Research Encyclopedia of Climate Science. Oxford University Press, pp. 1-51. ISBN 9780190228620
    Publication Date: 2021-02-17
    Description: In this article, the concepts and background of regional climate modeling of the future Baltic Sea are summarized and state-of-the-art projections, climate change impact studies, and challenges are discussed. The focus is on projected oceanographic changes in future climate. However, as these changes may have a significant impact on biogeochemical cycling, nutrient load scenario simulations in future climates are briefly discussed as well. The Baltic Sea is special compared to other coastal seas as it is a tideless, semi-enclosed sea with large freshwater and nutrient supply from a partly heavily populated catchment area and a long response time of about 30 years, and as it is, in the early 21st century, warming faster than any other coastal sea in the world. Hence, policymakers request the development of nutrient load abatement strategies in future climate. For this purpose, large ensembles of coupled climate–environmental scenario simulations based upon high-resolution circulation models were developed to estimate changes in water temperature, salinity, sea-ice cover, sea level, oxygen, nutrient, and phytoplankton concentrations, and water transparency, together with uncertainty ranges. Uncertainties in scenario simulations of the Baltic Sea are considerable. Sources of uncertainties are global and regional climate model biases, natural variability, and unknown greenhouse gas emission and nutrient load scenarios. Unknown early 21st-century and future bioavailable nutrient loads from land and atmosphere and the experimental setup of the dynamical downscaling technique are perhaps the largest sources of uncertainties for marine biogeochemistry projections. The high uncertainties might potentially be reducible through investments in new multi-model ensemble simulations that are built on better experimental setups, improved models, and more plausible nutrient loads. The development of community models for the Baltic Sea region with improved performance and common coordinated experiments of scenario simulations is recommended.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: In the Baltic Sea, salinity and its large variability, both horizontal and vertical, are key physical factors in determining the overall stratification conditions. In addition to that, salinity and its changes also have large effects on various ecosystem processes. Several factors determine the observed two-layer vertical structure of salinity. Due to the excess of river runoff to the sea, there is a continuous outflow of water masses in the surface layer with a compensating inflow to the Baltic in the lower layer. Also, the net precipitation plays a role in the water balance and consequently in the salinity dynamics. The salinity conditions in the sea are also coupled with the changes in the meteorological conditions. The ecosystem is adapted to the current salinity level: a change in the salinity balance would lead to ecological stress of flora and fauna, and related negative effects on possibilities to carry on sustainable development of the ecosystem. The Baltic Sea salinity regime has been studied for more than 100 years. In spite of that, there are still gaps in our knowledge of the changes of salinity in space and time. An important part of our understanding of salinity are its long-term changes. However, the available scenarios for the future development of salinity are still inaccurate. We still need more studies on various factors related to salinity dynamics. Among others more knowledge is needed, e.g. from meteorological patterns in various space and time scales and mesoscale variability in precipitation. Also, updated information on river runoff and inflows of saline water is needed to close the water budget. We still do not understand accurately enough the water mass exchange between North Sea and Baltic Sea and within its sub-basins. Scientific investigations of the complicated vertical mixing processes are additionally required. This paper is a continuation and update of the BACC II book which was published in 2015, including information from articles issued until 2012. After that, there have been many new publications on the salinity dynamics, not least because of the Major Baltic Inflow which took place in December 2014. Several key topics have been investigated, including the coupling of long-term variations of climate with the observed salinity changes. Here the focus is on observing and indicating the role of climate change for salinity dynamics. New results of MBI-dynamics and related water mass interchange between the Baltic Sea and the North Sea have been published. Those studies also included results from the MBI-related meteorological conditions, variability in salinity and exchange of water masses between various scales. All these processes are in turn coupled with changes in the Baltic Sea circulation dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...