GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • OceanRep  (5)
  • 1
    Publikationsdatum: 2019-09-23
    Beschreibung: The global Late Pliocene/Early Pleistocene cooling (~3.0–2.0 million years ago – Ma) concurred with extremely high diatom and biogenic opal production in most of the major coastal upwelling regions. This phenomenon was particularly pronounced in the Benguela upwelling system (BUS), off Namibia, where it is known as the Matuyama Diatom Maximum (MDM). Our study focuses on a new diatom silicon isotope (δ30Si) record covering the MDM in the BUS. Unexpectedly, the variations in δ30Si signal follow biogenic opal content, whereby the highest δ30Si values correspond to the highest biogenic opal content. We interpret the higher δ30Si values during the MDM as a result of a stronger degree of silicate utilisation in the surface waters caused by high productivity of mat-forming diatom species. This was most likely promoted by weak upwelling intensity dominating the BUS during the Late Pliocene/Early Pleistocene cooling combined with a large silicate supply derived from a strong Southern Ocean nutrient leakage responding to the expansion of Antarctic ice cover and the resulting stratification of the polar ocean 3.0–2.7 Ma ago. A similar scenario is hypothesized for other major coastal upwelling systems (e.g. off California) during this time interval, suggesting that the efficiency of the biological carbon pump was probably sufficiently enhanced in these regions during the MDM to have significantly increased the transport of atmospheric CO2 to the deep ocean. In addition, the coeval extension of the area of surface water stratification in both the Southern Ocean and the North Pacific, which decreased CO2 release to the atmosphere, led to further enhanced atmospheric CO2 drawn-down and thus contributed significantly to Late Pliocene/Early Pleistocene cooling.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 229 (2). pp. 289-302.
    Publikationsdatum: 2021-07-21
    Beschreibung: Temperature and ration level can differentially affect growth and life history characteristics of marine organisms. In this experiment we reared juvenile cuttlefish, Sepia elliptica, under two feeding regimes (satiation and half satiation) and two temperature regimes (25 and 30°C). This study examined differences in somatic growth, muscle tissue structure and composition as a function of temperature and food levels. We estimated body mass and the concentration of water, carbohydrate, protein and lipid in the mantle muscle tissue for each individual. Both high water temperature and high feeding rations increased growth rates. Temperature appeared to change the rates of muscle fibre generation and fibre growth similarly. In contrast, the ration level altered the relative rates of fibre production and fibre growth. The muscle tissue of individuals reared at 30°C had higher concentrations of carbohydrate and protein. In contrast, increasing ration levels only increased carbohydrate concentrations in the muscle tissue. The muscle tissue of reared juveniles had lower concentrations of carbohydrate and protein than wild individuals of similar size. In conclusion, water temperature and feeding levels both affect somatic growth, but the nature of the effect at the sub-organismal level differs.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-07-05
    Beschreibung: Shortfinned squid species of the genus Illex support commercial fisheries throughout the Atlantic Ocean and Mediterranean Sea. Previous identification of interspecific and intraspecific populations by morphological and size-at-maturity studies have not provided conclusive results. We analysed morphometric body and beak variables (24 characters) in three species of the genus (I. coindetii, I. illecebrosus and I. argentinus), using a geographic and seasonal series of 33 populations for 1,500 specimens of I. coindetii, I. illecebrosus and I. argentinus. Residuals of the regression between each morphometric body and beak variable and mantle length were used as input in a stepwise discriminant analysis. Species discrimination by body and hectocotylus characters required at least eight variables and resulted in high correct-classification percentages for I. coindetii and I. argentinus (75% and 90%, respectively), whereas the best identification resulted from beak characters (83% correctly classified). Size of the suckerless basal arm, sucker-bearing length and beak lateral wall discriminated best among I. coindetii from northern Iberia, northwest Iberia (year-1996) and Ireland in the Atlantic and western Mediterranean versus middle and eastern Mediterranean samples. Canadian shelf and American samples were discriminated from Canadian slope I. illecebrosus. Winter/shelf and winter/slope samples of I. argentinus seemed to form a single biological group separated from Falkland Island, 46°S/autumn spawners and 46°S/1996 specimens along the Patagonian Shelf. No significant sexual or maturity polymorphism was obtained. Discriminant analysis optimised population diagnosis on a morphometric basis of interest in fisheries strategies.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-09-23
    Beschreibung: We present new nitrogen isotope data from the water column and surface sediments for paleo–proxy validation collected along the Peruvian and Ecuadorian margins between 1°N and 18°S. Productivity proxies in the bulk sediment (organic carbon, total nitrogen, biogenic opal, C37 alkenone concentrations) and 15N/14N ratios were measured at more than 80 locations within and outside the present-day Peruvian oxygen minimum zone (OMZ). Microbial N-loss to N2 in subsurface waters under O2 deficient conditions leaves a characteristic 15N-enriched signal in underlying sediments. We find that phytoplankton nutrient uptake in surface waters within the high nutrient, low chlorophyll (HNLC) regions of the Peruvian upwelling system influences the sedimentary signal as well. How the δ15Nsed signal is linked to these processes is studied by comparing core-top values to the 15N/14N of nitrate and nitrite (δ15NNOx) in the upper 200 m of the water column. Between 1°N and 10°S, subsurface O2 is still high enough to suppress N-loss keeping δ15NNOx values relatively low in the subsurface waters. However δ15NNOx values increase toward the surface due to partial nitrate utilization in the photic zone in this HNLC portion of the system. δ15Nsed is consistently lower than the isotopic signature of upwelled NO3−, likely due to the corresponding production of 15N depleted organic matter. Between 10°S and 15°S, the current position of perennial upwelling cells, HNLC conditions are relaxed and biological production and near-surface phytoplankton uptake of upwelled NO3− are most intense. In addition, subsurface O2 concentration decreases to levels sufficient for N-loss by denitrification and/or anammox, resulting in elevated subsurface δ15NNOx values in the source waters for coastal upwelling. Increasingly higher production southward is reflected by various productivity proxies in the sediments, while the north–south gradient towards stronger surface NO3− utilization and subsurface N-loss is reflected in the surface sediment 15N/14N ratios. South of 10°S, δ15Nsed is lower than maximum water column δ15NNOx values most likely because only a portion of the upwelled water originates from the depths where highest δ15NNOx values prevail. Though the enrichment of δ15NNOx in the subsurface waters is unambiguously reflected in δ15Nsed values, the magnitude of δ15Nsed enrichment depends on both the depth of upwelled waters and high subsurface δ15NNOx values produce by N-loss. Overall, the degree of N-loss influencing subsurface δ15NNOx values, the depth origin of upwelled waters, and the degree of near-surface nitrate utilization under HNLC conditions should be considered for the interpretation of paleo δ15Nsed records from the Peruvian oxygen minimum zone.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-08-05
    Beschreibung: International Ocean Discovery Program (IODP) Expedition 353 (29 November 2014–29 January 2015) drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. Recovery averaged 97%, including coring with the advanced piston corer, half-length advanced piston corer, and extended core barrel systems. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gases, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation to the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in key regions where these signals are the strongest and best preserved. Salinity changes at IODP Sites U1445 and U1446 (northeast Indian margin) result from direct precipitation as well as runoff from the Ganges-Brahmaputra river complex and the many river basins of peninsular India. Salinity changes at IODP Sites U1447 and U1448 (Andaman Sea) result from direct precipitation and runoff from the Irrawaddy and Salween river basins. IODP Site U1443 (Ninetyeast Ridge) is an open-ocean site with a modern surface water salinity very near the global mean but is documented to have recorded changes in monsoonal circulation over orbital to tectonic timescales. This site serves as an anchor for establishing the extent to which the north to south (19°N to 5°N) salinity gradient changes over time.
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...