GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-02-01
    Beschreibung: Perennial macroalgae within the genus Fucus are known to exude metabolites through their outer thallus surface. Some of these metabolites have pro- and/or antifouling properties. Seasonal fluctuations of natural fouling pressure and chemical fouling control strength against micro- and macrofoulers have previously been observed in Fucus, suggesting that control strength varies with threat. To date, a study on the seasonal composition of surface associated metabolites, responsible for much of the fouling control, has not been done. We sampled individuals of the two co-occurring species F. vesiculosus and F. serratus at monthly intervals (six per species and month) during a one-year field study. We analysed the chemical composition of surface associated metabolites of both Fucus species by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Additionally, we correlated abiotic and biotic parameters recorded monthly within the sampled habitat with the variation in the chemical surface landscape of Fucus. Our study revealed that the chemical surface composition of both Fucus species exhibits substantial seasonal differences between spring/summer and autumn/winter months. Light and temperature explained most of the seasonal variability in surface metabolite composition of both Fucus species. A strong summerly up-regulation of eighteen saccharides and two hydroxy acids in F. vesiculosus as well as of four fatty acids and two saccharides in F. serratus was observed. We discuss how these up-regulated molecules may have a complex effect on associated microfoulers, both promoting or decreasing fouling depending on metabolite and bacterial identity. These seasonal shifts in the surface metabolome seem to exert a compound control of density and composition of the Fucus associated biofilm.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-08-03
    Beschreibung: The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. We studied benthic biogeochemical fluxes in the Arctic and the influence of short-term (seasonal to annual), long-term (annual to decadal) and other environmental variability on their spatial distribution to provide a baseline for estimates of the impact of future changes. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment–water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation, indicating that oxygen flux is not representative of other nutrient sink–source dynamics. We tested the influence of eight environmental parameters on single benthic fluxes. Short-term environmental parameters (sinking flux of particulate organic carbon above the bottom, sediment surface Chl a) were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters (porosity, surface manganese and iron concentration, bottom water oxygen concentrations) together with δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Variation in pigments at the sediment surface was most important to explain variation in fluxes of silicic acid. In a model including all fluxes synchronously, the overall spatial distribution could be best explained (57%) by the combination of sediment Chl a, phaeopigments, δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability along with rapidly ongoing environmental changes to predict the flux of oxygen and nutrients across Arctic sediments even at short timescales. Our results contribute to improve ecological models predicting the impact of climate change on the functioning of marine ecosystems.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2015-07-24
    Beschreibung: The diversity-ecosystem function relationship is an important topic in ecology but has not received much attention in Arctic environments, and has rarely been tested for its stability in time. We studied the temporal variability of benthic ecosystem functioning at hotspots (sites with high benthic boundary fluxes) and coldspots (sites with lower fluxes) across two years in the Canadian Arctic. Benthic remineralisation function was measured as fluxes of oxygen, silicic acid, phosphate, nitrate and nitrite at the sediment-water interface. In addition we determined sediment pigment concentration and taxonomic and functional macrobenthic diversity. To separate temporal from spatial variability, we sampled the same nine sites from the Mackenzie Shelf to Baffin Bay during the same season (summer or fall) in 2008 and 2009. We observed that temporal variability of benthic remineralisation function at hotspots is higher than at coldspots and that taxonomic and functional macrobenthic diversity did not change significantly between years. Temporal variability of food availability (i.e., sediment surface pigment concentration) seemed higher at coldspot than at hotspot areas. Sediment chlorophyll a (Chl a) concentration, taxonomic richness, total abundance, water depth and abundance of the largest gallery-burrowing polychaete Lumbrineris tetraura together explained 42% of the total variation in fluxes. Food supply proxies (i.e., sediment Chl a and depth) split hot- from coldspot stations and explained variation on the axis of temporal variability, and macrofaunal community parameters explained variation mostly along the axis separating eastern from western sites with hot- or coldspot regimes. We conclude that variability in benthic remineralisation function, food supply and diversity will react to climate change on different time scales, and that their interactive effects may hide the detection of progressive change, particularly at hotspots. Time-series of benthic functions and its related parameters should be conducted at both hot- and coldspots to produce reliable predictive models.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  [Poster] In: ASSW15 - Arctic Science Summit Week 2015, 23.-30.04.2015, Toyama, Japan .
    Publikationsdatum: 2016-12-12
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  (Diploma thesis), Ruprecht-Karls-Universität, Heidelberg, Germany, 81 pp
    Publikationsdatum: 2012-07-06
    Beschreibung: During the last decades, marine ecosystems have experienced an increasing amount of bioinvasions mediated by human activities, which have often caused irreversible changes in the affected environment. Recent studies have revealed ship traffic as a major anthropogenic pathway and source for introductions. However, the role of sessile epibenthic communities attached to ship hulls, i.e. fouling communities, as a source of species’ invasion after transport to a new environment has hardly been investigated. The first obstacle for a transported species to become invasive is its survival in the new habitat. For a transported organism, the probability to establish successfully should increase with the stability of the community it is part of. Controversially discussed concepts predict the ability of a transported community to resist against environmental changes and recruitment by the local, non-indigenous species based on its diversity. The present study aims to investigate the mechanisms that determine the stability of marine fouling communities after transport into a new environment. Assemblages of two different successional stages (2-months and 4-months old) were transplanted from a port site to a lagoon site, and vice versa, in the inner Tokyo Bay, Japan. Their stability was measured as the rate at which they converged to local communities of the same successional stage in terms of community composition. In all cases, older transplanted fouling communities converged slower towards their native counterparts than younger ones. Subsequent analyses on community diversity and available settlement substratum – the most important resource in hardbottom communities – and the convergence rate did not detect any significant relationship between them. Instead, the identity and life strategy of species present in the transplanted communities as well as the species present in the environment were the most important factors determining the persistence of the introduced communities. More precisely, bivalves and a serpulid worm strongly enhanced the stability of fouling communities in the new environment, while Molgula manhattensis and Polydora cornuta accelerated the convergence process by rapid recruitment from the local environment into the introduced communities and as well by mortality after transport of the second species. The importance of key species and their life strategies does not support the diversity-stability hypothesis and should lead to a concept that predicts community stability from the life strategy of component species. Moreover, as a practical implication of this study, the establishment of fouling communities on mobile substrata should be controlled in order to reduce the risk of marine bioinvasions caused by matured fouling communities
    Materialart: Thesis , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  [Talk] In: Arctic Change 2008 Conference, 09.-12.12, Quebec, Canada .
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    In:  [Talk] In: 54. Annual Meeting of the Ecological Society of Japan, 19.-23.03.2007, Matsuyama, Japan .
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    University of Manitoba Pr.
    In:  In: On The Edge: From Knowledge to Action. , ed. by Barber, D. G., Tjaden, T., Leitch, D., Barber, L. and Chan, W. University of Manitoba Pr., Winnipeg, Canada, pp. 79-94.
    Publikationsdatum: 2019-09-23
    Materialart: Book chapter , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...