GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (5)
  • 1
    Publication Date: 2020-07-31
    Description: Atmospheric CO2 and global climate are closely coupled. Since 800 ka CO2 concentrations have been up to 50% higher during interglacial compared to glacial periods. Because of its dependence on temperature, humidity, and erosion rates, chemical weathering of exposed silicate minerals was suggested to have dampened these cyclic variations of atmospheric composition. Cooler and drier conditions and lower non-glacial erosion rates suppressed in situ chemical weathering rates during glacial periods. However, using systematic variations in major element geochemistry, Sr–Nd isotopes and clay mineral records from Ocean Drilling Program Sites 1143 and 1144 in the South China Sea spanning the last 1.1 Ma, we show that sediment deposited during glacial periods was more weathered than sediment delivered during interglacials. We attribute this to subaerial exposure and weathering of unconsolidated shelf sediments during glacial sealevel lowstands. Our estimates suggest that enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands can account for ~9% of the carbon dioxide removed from the atmosphere during the glacial and thus represent a significant part of the observed glacial–interglacial variation of ~80 ppmv. As a result, if similar magnitudes can be identified in other tropical shelf-slope systems, the effects of increased sediment exposure and subsequent silicate weathering during lowstands could have potentially enhanced the drawdown of atmospheric CO2 during cold stages of the Quaternary. This in turn would have caused an intensification of glacial cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Highlights • Kuroshio Current proxy was established by statistical analyses on grain size spectrum. • Sr–Nd isotope analyses on Kuroshio grain size spectrum reveals source of Taiwan. • Synchronous shift in ENSO and the North Pacific Gyre is subject to the insolation. • Earth System Modeling results confirm our proxies-indicated Kuroshio Current strength. Abstract The Kuroshio Current (KC) is the northward branch of the North Pacific subtropical gyre (NPG) and exerts influence on the exchange of physical, chemical, and biological properties of downstream regions in the Pacific Ocean. Resolving long-term changes in the flow of the KC water masses is, therefore, crucial for advancing our understanding of the Pacific's role in global ocean and climate variability. Here, we reconstruct changes in KC dynamics over the past 20 ka based on grain-size spectra, clay mineral, and Sr–Nd isotope constraints of sediments from the northern Okinawa Trough. Combined with published sediment records surrounding the NPG, we suggest that the KC remained in the Okinawa Trough throughout the Last Glacial Maximum. Together with Earth-System-Model simulations, our results additionally indicate that KC intensified considerably during the early Holocene (EH). The synchronous establishment of the KC “water barrier” and the modern circulation pattern during the EH highstand shaped the sediment transport patterns. This is ascribed to the precession-induced increase in the occurrence of La Niña-like state and the strength of the East Asian summer monsoon. The synchronicity of the shifts in the intensity of the KC, Kuroshio extension, and El Niño/La Niña-Southern Oscillation (ENSO) variability may further indicate that the western branch of the NPG has been subject to basin-scale changes in wind stress curl over the North Pacific in response to low-latitude insolation. Superimposed on this long-term trend are high-amplitude, large century, and millennial-scale variations during last 5 ka, which are ascribed to the advent of modern ENSO when the equatorial oceans experienced stronger insolation during the boreal winter.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 14 (5). pp. 1538-1551.
    Publication Date: 2018-02-28
    Description: The radiogenic strontium (Sr) and neodymium (Nd) isotope compositions of the detrital fraction of surface and subsurface sediments have been determined to trace sediment provenance and contributions from Asian dust off the east coast of Luzon Islands in the western Philippine Sea. The Sr and Nd isotope compositions have been very homogenous near the east coast of the Luzon Islands during the latest Quaternary yielding relatively least radiogenic Sr (87Sr/86Sr = 0.70453 to 0.70491) and more radiogenic Nd isotope compositions (εNd(0) = +5.3 to +5.5). These isotope compositions are similar to Luzon rocks and show that these sediments were mainly derived from the Luzon Islands. In contrast, the Sr and Nd isotope compositions of sediments on the Benham Rise and in the Philippine Basin are markedly different in that they are characterized by overall more variable and more radiogenic Sr isotope compositions (87Sr/86Sr = 0.70452 to 0.70723) and less radiogenic Nd isotope compositions (εNd(0) = −5.3 to +2.4). The Sr isotope composition in the Huatung Basin is intermediate between those of the east coast of Luzon and Benham Rise, but shows the least radiogenic Nd isotope compositions. The data are consistent with a two end-member mixing relationship between Luzon volcanic rocks and eolian dust from the Asian continent, which is characterized by highly radiogenic Sr and unradiogenic Nd isotope compositions. The results show that Asian continental dust contributes about 10–50% of the detrital fraction of the sediments on Benham Rise in the western Philippine Sea, which offers the potentials to reconstruct the climatic evolution of eastern Asia from these sediments and compare this information to the records from the central and northern Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Quaternary East Asian winter monsoon (EAWM) evolution has long been attributed to high-latitude Northern Hemisphere climate change. However, it cannot explain the distinct relationships of the EAWM in the northern and southern East Asian marginal sea in paleoclimatic records. Here we present an EAWM record of the northern East China Sea over the past 300 ka and a transient climate simulation with the Kiel Climate Model through the Holocene. Both proxy record and simulation suggest anticorrelated long-term EAWM evolution between the northern East China Sea and the South China Sea. We suggest that this spatial discrepancy of EAWM can be interpreted as El Niño–Southern Oscillation (ENSO)-like controlling, which generates cyclonic/anticyclonic wind anomalies in the northern/southern East Asian marginal sea. This research explains much of the controversy in nonorbital scale variability of Quaternary EAWM records in the East Asian marginal sea and supports a potent role of tropical forcing in East Asian winter climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Highlights • Yangtze and Yellow River sediments can be distinguished with SrNd isotope. • Okinawa Trough (OT) sediments derived from the Yangtze River from 18.0 to 10.5 ka. • Yangtze and Yellow River contributed sediment to the OT from 10.5 to 7.0 ka. • Kuroshio Current control Taiwan sediment to the OT after 7.0 ka. • Yellow River sediment was transported to the OT by the coastal current in the last 10.5 ka. Abstract The Okinawa Trough (OT) is a large sink of sediments supplied by the East Asian continent. Identifying the provenance of the OT sediments is key to reconstructing the temporal and spatial variations of the terrigenous supply to this area and is important for understanding the impact of paleoclimatic and paleoceanographic variability on the sediment supply to this marginal sea over the late Quaternary. In this contribution, we show that radiogenic strontium (Sr) and neodymium (Nd) isotopes allow to efficiently distinguish Yellow and Yangtze/Taiwan River detrital sediments, and can be used to reconstruct distinct changes in the provenance of the detrital fraction of marine sediments from the middle and northern OT since the last deglaciation. The Sr and Nd isotope signatures are compared to those of the potential sediment sources, namely the Yellow and Yangtze Rivers, the Taiwan orogen, and volcanic material from the OT and nearby islands, and the relative contributions of these sources are reconstructed. The Sr and Nd isotope compositions of the detrital fraction in the two sediment cores recovered from the middle and northern OT show that the sediments mainly originated from the Yangtze River between 18 and 10.5 ka, which was caused by low sea level and a widely developed channel system on the continental shelf. During the period between 10.5 and 7.0 ka, the rising sea level resulted in elevated Yangtze and Yellow Rivers sediment input into the OT. Simultaneously, large-scale volcanic activity also contributed significant amounts of material to the OT. During the last 7.0 ka, besides important contributions from the Yellow River, the intensification of the Kuroshio Current resulted in increased delivery of sediment from Taiwan to the OT.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...