GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: The Baltic Sea is one of the world’s largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within, microbial ecosystems, but are computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-22
    Description: Environmental context: Halocarbons are trace gases important in atmospheric ozone chemistry whose biogenic production – among other factors – depends on light-induced stress of marine algae. Several studies have confirmed this effect in laboratory experiments but knowledge in natural systems remains sparse. In mesocosm experiments, which are a link between field and laboratory studies, we observed that the influence of natural levels of ultraviolet radiation on halocarbon dynamics in the marine surface waters was either insignificant or concealed by the complex interactions in the natural systems. Abstract: The aim of the present study was to evaluate the influence of different light quality, especially ultraviolet radiation (UVR), on the dynamics of volatile halogenated organic compounds (VHOCs) at the sea surface. Short term experiments were conducted with floating gas-tight mesocosms of different optical qualities. Six halocarbons (CH3I, CHCl3, CH2Br2, CH2ClI, CHBr3 and CH2I2), known to be produced by phytoplankton, together with a variety of biological and environmental variables were measured in the coastal southern Baltic Sea and in the Raunefjord (North Sea). These experiments showed that ambient levels of UVR have no significant influence on VHOC dynamics in the natural systems. We attribute it to the low radiation doses that phytoplankton cells receive in a normal turbulent surface mixed layer. The VHOC concentrations were influenced by their production and removal processes, but they were not correlated with biological or environmental parameters investigated. Diatoms were most likely the dominant biogenic source of VHOCs in the Baltic Sea experiment, whereas in the Raunefjord experiment macroalgae probably contributed strongly to the production of VHOCs. The variable stable carbon isotope signatures (δ13C values) of bromoform (CHBr3) also indicate that different autotrophic organisms were responsible for CHBr3 production in the two coastal environments. In the Raunefjord, despite strong daily variations in CHBr3 concentration, the carbon isotopic ratio was fairly stable with a mean value of –26 ‰. During the declining spring phytoplankton bloom in the Baltic Sea, the δ13C values of CHBr3 were enriched in 13C and showed noticeable diurnal changes (–12 ‰ ± 4). These results show that isotope signature analysis is a useful tool to study both the origin and dynamics of VHOCs in natural systems.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Global warming is assumed to alter the trophic interactions and carbon flow patterns of aquatic food webs. The impact of temperature on phyto-bacterioplankton coupling and bacterial community composition (BCC) was the focus of the present study, in which an indoor mesocosm experiment with natural plankton communities from the western Baltic Sea was conducted. A 6°C increase in water temperature resulted, as predicted, in tighter coupling between the diatom-dominated phytoplankton and heterotrophic bacteria, accompanied by a strong increase in carbon flow into bacterioplankton during the phytoplankton bloom phase. Suppressed bacterial development at cold in situ temperatures probably reflected lowered bacterial production and grazing by protists, as the latter were less affected by low temperatures. BCC was strongly influenced by the phytoplankton bloom stage and to a lesser extent by temperature. Under both temperature regimes, Gammaproteobacteria clearly dominated during the phytoplankton peak, with Glaciecola sp. as the single most abundant taxon. However, warming induced the appearance of additional bacterial taxa belonging to Betaproteobacteria and Bacteroidetes. Our results show that warming during an early phytoplankton bloom causes a shift towards a more heterotrophic system, with the appearance of new bacterial taxa suggesting a potential for utilization of a broader substrate spectrum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-26
    Description: Epsilonproteobacteria have been found globally distributed in marine anoxic/sulfidic areas mediating relevant transformations within the sulfur and nitrogen cycles. In the Baltic Sea redox zones, chemoautotrophic epsilonproteobacteria mainly belong to the Sulfurimonas gotlandica GD17 cluster for which recently a representative strain, S. gotlandica GD1T, could be established as a model organism. In this study, the potential effects of changes in dissolved inorganic carbon (DIC) and pH on S. gotlandica GD1T were examined. Bacterial cell abundance within a broad range of DIC concentrations and pH values were monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for achieving maximal cell numbers was already reached at 800 μmol L−1, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6–7.1 there was no significant difference in substrate utilization; however, at lower pH values maximum cell abundance decreased sharply and cell-specific substrate consumption increased.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Society for Microbiology
    In:  Applied and Environmental Microbiology, 77 (11). pp. 3726-3733.
    Publication Date: 2020-06-11
    Description: The bacterial community in the sea surface microlayer (SML) (bacterioneuston) is exposed to unique physicochemical properties and stronger meteorological influences than the bacterial community in the underlying water (ULW) (bacterioplankton). Despite extensive research, however, the structuring factors of the bacterioneuston remain enigmatic. The aim of this study was to examine the effect of meteorological conditions on bacterioneuston and bacterioplankton community structures and to identify distinct, abundant, active bacterioneuston members. Nineteen bacterial assemblages from the SML and ULW of the southern Baltic Sea, sampled from 2006 to 2008, were compared. Single-strand conformation polymorphism (SSCP) fingerprints were analyzed to distinguish total (based on the 16S rRNA gene) and active (based on 16S rRNA) as well as nonattached and particle-attached bacterial assemblages. The nonattached communities of the SML and ULW were very similar overall (similarity: 47 to 99%; mean: 88%). As an exception, during low wind speeds and high radiation levels, the active bacterioneuston community increasingly differed from the active bacterioplankton community. In contrast, the particle-attached assemblages in the two compartments were generally less similar (similarity: 8 to 98%; mean: 62%), with a strong variability in the active communities that was solely related to wind speed. Both nonattached and particle-attached active members of the bacterioneuston, which were found exclusively in the SML, were related to environmental clones belonging to the Cyanobacteria, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria originally found in diverse habitats, but especially in water columns. These results suggest that bacterioneuston communities are strongly influenced by the ULW but that specific meteorological conditions favor the development of distinctive populations in the air-water interface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Poster] In: First EMBO Conference on Aquatic Microbial Ecology – SAME13, 8.09.13-10.09.13, Stresa, Italy .
    Publication Date: 2013-12-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-23
    Description: In contrast to clear stimulatory effects of rising temperature, recent studies of the effects of CO2 on planktonic bacteria have reported conflicting results. To better understand the potential impact of predicted climate scenarios on the development and performance of bacterial communities, we performed bifactorial mesocosm experiments (pCO2 and temperature) with Baltic Sea water, during a diatom dominated bloom in autumn and a mixed phytoplankton bloom in summer. The development of bacterial community composition (BCC) followed well-known algal bloom dynamics. A principal coordinate analysis (PCoA) of bacterial OTUs (operational taxonomic units) revealed that phytoplankton succession and temperature were the major variables structuring the bacterial community whereas the impact of pCO2 was weak. Prokaryotic abundance and carbon production, and organic matter concentration and composition were partly affected by temperature but not by increased pCO2. However, pCO2 did have significant and potentially direct effects on the relative abundance of several dominant OTUs; in some cases, these effects were accompanied by an antagonistic impact of temperature. Our results suggest the necessity of high-resolution BCC analyses and statistical analyses at the OTU level to detect the strong impact of CO2 on specific bacterial groups, which in turn might also influence specific organic matter degradation processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Leitstelle Dt. Forschungsschiffe
    In:  Forschungsschiff Maria S. Merian : Reise Nr. MSM ... = Research vessel Maria S. Merian, 01 . Leitstelle Dt. Forschungsschiffe, Hamburg, Germany, 45 pp.
    Publication Date: 2013-04-10
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-19
    Description: In order to examine the effects of warming and diversity changes on primary productivity, we conducted a meta-analysis on six independent indoor mesocosm experiments with a natural plankton community from the Baltic Sea. Temperature effects on primary productivity changed with light intensity and zooplankton density and analysed pathways between temperature, diversity and productivity, elucidating direct and indirect effects of warming on primary productivity during the spring phytoplankton bloom. Our findings indicate that warming directly increased carbon specific primary productivity, which was more pronounced under low grazing pressure. On the other hand, primary productivity per unit water volume did not respond to increased temperature, because of a negative temperature effect on phytoplankton biomass. Moreover, primary productivity response to temperature changes depended on light limitation. Using path analysis, we tested whether temperature effects were direct or mediated by warming effects on phytoplankton diversity. Although phytoplankton species richness had a positive impact on both net primary productivity and carbon specific primary productivity – and evenness had a negative effect on net primary productivity – both richness and evenness were not affected by temperature. Thus, we suggest that diversity effects on primary productivity depended mainly on other factors than temperature like grazing, sinking or nutrient limitation, which themselves are temperature dependent. Highlights ► Impact of warming on primary productivity and diversity–productivity relationship. ► Meta-analysis on indoor mesocosm experiments with a natural plankton community. ► Temperature has a direct impact on specific productivity, not on net productivity. ► Species richness increases and evenness decreases net primary productivity. ► Temperature does not directly affect diversity–productivity relationship.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-05-25
    Description: Salinity is a major factor controlling the distribution of biota in aquatic systems, and most aquatic multicellular organisms are either adapted to life in saltwater or freshwater conditions. Consequently, the saltwater–freshwater mixing zones in coastal or estuarine areas are characterized by limited faunal and floral diversity. Although changes in diversity and decline in species richness in brackish waters is well documented in aquatic ecology, it is unknown to what extent this applies to bacterial communities. Here, we report a first detailed bacterial inventory from vertical profiles of 60 sampling stations distributed along the salinity gradient of the Baltic Sea, one of world's largest brackish water environments, generated using 454 pyrosequencing of partial (400 bp) 16S rRNA genes. Within the salinity gradient, bacterial community composition altered at broad and finer-scale phylogenetic levels. Analogous to faunal communities within brackish conditions, we identified a bacterial brackish water community comprising a diverse combination of freshwater and marine groups, along with populations unique to this environment. As water residence times in the Baltic Sea exceed 3 years, the observed bacterial community cannot be the result of mixing of fresh water and saltwater, but our study represents the first detailed description of an autochthonous brackish microbiome. In contrast to the decline in the diversity of multicellular organisms, reduced bacterial diversity at brackish conditions could not be established. It is possible that the rapid adaptation rate of bacteria has enabled a variety of lineages to fill what for higher organisms remains a challenging and relatively unoccupied ecological niche.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...