GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-30
    Description: In this paper, we review the state of the art and major challenges in current efforts to incorporate biogeochemical functional groups into models that can be applied on basin-wide and global scales, with an emphasis on models that might ultimately be used to predict how biogeochemical cycles in the ocean will respond to global warming. We define the term “biogeochemical functional group” to refer to groups of organisms that mediate specific chemical reactions in the ocean. Thus, according to this definition, “functional groups” have no phylogenetic meaning—these are composed of many different species with common biogeochemical functions. Substantial progress has been made in the last decade toward quantifying the rates of these various functions and understanding the factors that control them. For some of these groups, we have developed fairly sophisticated models that incorporate this understanding, e.g. for diazotrophs (e.g. Trichodesmium), silica producers (diatoms) and calcifiers (e.g. coccolithophorids and specifically Emiliania huxleyi). However, current representations of nitrogen fixation and calcification are incomplete, i.e., based primarily upon models of Trichodesmium and E. huxleyi, respectively, and many important functional groups have not yet been considered in open-ocean biogeochemical models. Progress has been made over the last decade in efforts to simulate dimethylsulfide (DMS) production and cycling (i.e., by dinoflagellates and prymnesiophytes) and denitrification, but these efforts are still in their infancy, and many significant problems remain. One obvious gap is that virtually all functional group modeling efforts have focused on autotrophic microbes, while higher trophic levels have been completely ignored. It appears that in some cases (e.g., calcification), incorporating higher trophic levels may be essential not only for representing a particular biogeochemical reaction, but also for modeling export. Another serious problem is our tendency to model the organisms for which we have the most validation data (e.g., E. huxleyi and Trichodesmium) even when they may represent only a fraction of the biogeochemical functional group we are trying to represent. When we step back and look at the paleo-oceanographic record, it suggests that oxygen concentrations have played a central role in the evolution and emergence of many of the key functional groups that influence biogeochemical cycles in the present-day ocean. However, more subtle effects are likely to be important over the next century like changes in silicate supply or turbulence that can influence the relative success of diatoms versus dinoflagellates, coccolithophorids and diazotrophs. In general, inferences drawn from the paleo-oceanographic record and theoretical work suggest that global warming will tend to favor the latter because it will give rise to increased stratification. However, decreases in pH and Fe supply could adversely impact coccolithophorids and diazotrophs in the future. It may be necessary to include explicit dynamic representations of nitrogen fixation, denitrification, silicification and calcification in our models if our goal is predicting the oceanic carbon cycle in the future, because these processes appear to play a very significant role in the carbon cycle of the present-day ocean and they are sensitive to climate change. Observations and models suggest that it may also be necessary to include the DMS cycle to predict future climate, though the effects are still highly uncertain. We have learned a tremendous amount about the distributions and biogeochemical impact of bacteria in the ocean in recent years, yet this improved understanding has not yet been incorporated into many of our models. All of these considerations lead us toward the development of increasingly complex models. However, recent quantitative model intercomparison studies suggest that continuing to add complexity and more functional groups to our ecosystem models may lead to decreases in predictive ability if the models are not properly constrained with available data. We also caution that capturing the present-day variability tells us little about how well a particular model can predict the future. If our goal is to develop models that can be used to predict how the oceans will respond to global warming, then we need to make more rigorous assessments of predictive skill using the available data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  Estuaries and Coasts, 37 . pp. 279-298.
    Publication Date: 2016-12-22
    Description: Estuarine turbidity maxima (ETM) play an impor- tant role in zooplankton and larval fish productivity in many estuaries. Yet in many of these systems, little is known about the food web that supports this secondary production. To see if phytoplankton have the potential to be a component of the ETM food web in the Chesapeake Bay estuary a series of cruises were carried out to determine the biomass distribution and floral composition of phytoplankton in and around the ETM during the winter and spring using fluorometry, high- performance liquid chromatography (HPLC), and microscopy. Two distinct phytoplankton communities were observed along the salinity gradient. In lower salinity waters, biomass was low and the community was composed mostly of diatoms, while in more saline waters biomass was high and the community was composed mostly of mixotrophic dinoflagellates, which were often concentrated in a thin layer below the pycnocline. Phytoplankton biomass was always low in the ETM, but high concentrations of phytoplankton pigment degradation products and cellular remains were often observed suggesting that this was an area of high phytoplankton mortality and/or an area where phytoplankton derived particulate organic matter was being trapped. These results, along with a box model analysis, suggest that under certain hydrodynamic conditions phyto- plankton derived organic matter can be trapped in ETM and potentially play a role in fueling secondary production.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-25
    Description: In an effort to identify the key mechanisms controlling biological productivity and food web structure in the Chesapeake Bay estuarine turbidity maxima (ETM), we measured plankton community metabolism on a series of surveys in the upper Chesapeake Bay during the winter and spring of 2007 and 2008. Measured quantities included primary production, bacterial production, planktonic community respiration, and algal pigment concentrations. These measurements revealed a classic minimum in photosynthesis in the vicinity of the ETM. Temporal variability in plankton community metabolism, primary production, respiration, and bacterial production, were highest in the southern oligohaline region down-estuary of the ETM, and appeared to be driven by dynamic bio-physical interactions. Elevated primary production and community respiration in this region were often associated with the presence of mixotrophic dinoflagellates. The dinoflagellate contribution to primary production and respiration appeared to be particularly large as a result of their mixotrophic capabilities, which allow them to obtain energy both autotrophically and heterotrophically. This study suggests that mixotrophic dinoflagellates play a key role in pelagic food web in the oligohaline region of Chesapeake Bay supplying most of the labile organic matter during late winter and spring and also providing a vector for transferring microbial production to mesozooplankton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-13
    Description: In this paper we used a steady-state ecosystem model that simulates both dissolved organic carbon (DOC) and nitrogen (DON) cycling to study how the planktonic community structure, nutrient availability, and dissolved organic matter (DOM) loading affect these cycles in idealized oceanic, coastal, and estuarine surface waters. The model was able to reproduce DOM and planktonic biomass distributions, uptake rates, and production rates (including DOM) that fell within ranges reported for oceanic, coastal, and estuarine systems. Using a sensitivity analysis we show that DOM cycling was intricately tied to the biomass concentration, distribution, and productivity of plankton. The efficiency of nutrient remineralization and the availability of inflowing nutrients and DON also played a large role in DOM cycling. In these simulations the largest autochthonous source of DOC was always phytoplankton exudation while important sources of DON varied considerably. In the oceanic simulations heterotrophic bacteria were particularly important for mediating DOM cycling because they were the primary agents that controlled nutrient recycling and supply (i.e., strong bottom-up control). In contrast, in the estuarine simulations mortality (mainly from grazing and viral lysis) had the most influence on DOM production. However, DOM cycling was generally less dependent on interactions between plankton in the estuarine case because of high nutrient and DOM loading. The coastal simulations were somewhere in between. In all simulations competition between different size classes of phytoplankton also played an important role in DOM cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations 〈 ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20 µM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of 〈 ∼ 0.05 µM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21 % of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between 〉 0 and ∼ 0.05 µM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...