GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  In: YOUMARES 8 – Oceans Across Boundaries: Learning from each other. Springer, Cham, Switzerland, pp. 179-195. ISBN 978-3-319-93284-2
    Publication Date: 2019-09-23
    Description: Microplastic research started at the turn of the millennium and is of growing interest, as microplastics have the potential to affect a whole range of organisms, from the base of the food web to top predators, including humans. To date, most studies are initial assessments of microplastic abundances for a certain area, thereby generally distinguishing three different sampling matrices: water, sediment and biota samples. Those descriptive studies are important to get a first impression of the extent of the problem, but for a proper risk assessment of ecosystems and their inhabitants, analytical studies of microplastic fluxes, sources, sinks, and transportation pathways are of utmost importance. Moreover, to gain insight into the effects microplastics might have on biota, it is crucial to identify realistic environmental concentrations of microplastics. Thus, profound knowledge about the effects of microplastics on biota is still scarce. Effects can vary regarding habitat, functional group of the organism, and polymer type for example, making it difficult to find quick answers to the many open questions. In addition, microplastic research is accompanied by many methodological challenges that need to be overcome first to assess the impact of microplastics on aquatic systems. Thereby, a development of standardized operational protocols (SOPs) is a pre-requisite for comparability among studies. Since SOPs are still lacking and new methods are developed or optimized very frequently, the aim of this chapter is to point out the most crucial challenges in microplastic research and to gather the most recent promising methods used to quantify environmental concentrations of microplastics and effect studies.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 53 pp
    Publication Date: 2021-12-14
    Description: In a warming climate it is important to know the upper thermal tolerance limits of organisms, especially in coastal regions where climate change is expected to lead to an increase in weather extremes such as heat waves. Physiological studies can help to predict the effects of global warming by determining if a species lives currently at their upper thermal tolerance limit. In this study, the intertidal sea anemone Haliplanella lineata from West Java, Indonesia, was examined for its upper thermal tolerance limit and its reactions to heat stress in the range close to the identified limit. The upper thermal tolerance limit, here defined as the maximum temperature at which more than 50 % of the test individuals survived the duration of the experiment of 42 days, was reached at 36° C. A surprisingly strong increase in mortality was observed when temperatures rose by just 1° C above 36° C. A gradual elimination with rising temperatures above 36° C was expected. This limit was observed in a set up in which single individuals were exposed to four different temperate regimes for 42 days. They exhibited an optimum performance at 34° C. Some response variables such as habitus, heat shock protein levels and asexual reproduction revealed a pattern of failing physiological functions at temperatures higher than 34° C. This sea anemone lives in the inte1iidal and is adapted to a wide range of daily fluctuating temperatures which result in a good performance at 34° C. The high mortality is in agreement with the limited acclimatory capacity, since they already live close to their upper thermal tolerance limit as an intertidal and tropical population. In the context of global warming, however, they are presumably not threatened since the expected increase in temperature and heat waves in Indonesia will not exceed the identified limit much and H line at a can survive temperatures above its limit for short amounts of time and recovers during exposure to colder temperature during high tide. This study was performed in the framework of the GAME programme hosted by GEOMAR, the Helmholtz Center for Ocean Research in Kiel, in collaboration with the Institut Pertanian Bogar in Bogor, Indonesia.
    Keywords: Course of study: MSc Biological Oceanography
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-30
    Description: The coastal and open oceans represent a major, but yet unconstrained, sink for plastics. It is likely that plastic-biota interactions are a key driver for the fragmentation, aggregation, and vertical transport of plastic litter from surface waters to sedimentary sinks. Cruise SO279 conducted sampling to address core questions of microplastic distribution in the open ocean water column, biota, and sediments. Seven stations were sampled between the outer Bay of Biscay and the primary working area south of the Azores. Additional samples were collected from surface waters along the cruise track to link European coastal and shelf waters with the open ocean gyre. Microplastic samples coupled with geochemical tracer analyses will build a mechanistic understanding of MP transport and its biological impact reaching from coastal seas to the central gyre water column and sinks at the seabed. Furthermore, floating plastics were sampled for microbial community and genetic analyses to investigate potential enzymatic degradation pathways. Cruise SO279 served as the third cruise of a number of connected research cruises to build an understanding of the transport pathways of plastic and microplastic debris in the North Atlantic from the input through rivers and air across coastal seas into the accumulation spots in the North Atlantic gyre and the vertical export to its sink at the seabed. The cruise was an international effort as part of the JPI Oceans project HOTMIC (“HOrizontal and vertical oceanic distribution, Transport, and impact of MICroplastics”) and the BMBF funded project PLASTISEA (‘Harvesting the marine Plastisphere for novel cleaning concepts’), and formed a joint effort of HOTMIC and PLASTISEA researchers from a range of countries and institutes.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights: • Effects of microplastics on Mytilus spp. were assessed over the course of 42 weeks. • Effects were seen even at the lowest MP concentration (15 particles/individual/week). • At the highest PS dose, clearance rates decreased significantly only after 36 weeks. • SOD and MDA concentrations declined as a consequence of exposure to microplastics. Abstract: Microplastics have been found in all compartments of the environment, and numerous life forms are known to take up the anthropogenic particles. Marine filter feeders are particularly susceptible to ingest suspended microplastics, but long-term studies on the potential effects of this uptake are scarce. We exposed juvenile Mytilus spp. to environmentally realistic doses of irregularly shaped polyvinylchloride (PVC) particles (15, 1500, 15,000, 150,000, 1,500,000 particles/individual/week calibrated in the size range 11–60 μm) and regularly shaped polystyrene (PS) beads (15, 1500, 15,000 particles/individual/week, 40 μm) over 42 weeks. During this period, we monitored physiological traits such as clearance rate, byssus production, growth rate, superoxide dismutase (SOD) activity, malondialdehyde (MDA) concentrations, and the condition index (CI). Negative effects of the tested microplastics on mussel performance emerged late in the experiment and were rather weak. Interestingly, even after having received the lowest particle dose of PS, SOD activity in the gill was significantly lower in mussels exposed to microplastics compared to a group of conspecifics that were kept in clean water. However, growth and CI, which are both closely related to the fitness of the mussels, were not found to be impaired at the end of the exposure phase. This is the so far longest laboratory microplastic exposure study on mussels and we worked with particle doses that reflect todays pollution levels. The small effect sizes we observed for the response variables assessed suggest that these specific microplastics pose only a minor threat to blue mussel populations.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Highlights: • Effects of microplastic on marine biota reflect the quality of experimental research. • The quality of published experiments can be quantified from an “ideal” experiment. • Previously published experiments have significantly deviated from “ideal”. • Implementation of proposed criteria can improve future microplastic experiments. Abstract: This article presents a novel conceptual blueprint for an ‘ideal’, i.e., ecologically relevant, microplastic effect study. The blueprint considers how microplastics should be characterized and applied in laboratory experiments, and how biological responses should be measured to assure unbiased data that reliably reflect the effects of microplastics on aquatic biota. This ‘ideal’ experiment, although practically unachievable, serves as a backdrop to improve specific aspects of experimental research on microplastic effects. In addition, a systematic and quantitative literature review identified and quantified departures of published experiments from the proposed ‘ideal’ design. These departures are related mainly to the experimental design of microplastic effect studies failing to mimic natural environments, and experiments with limited potential to be scaled-up to ecosystem level. To produce a valid and generalizable assessment of the effect of microplastics on biota, a quantitative meta-analysis was performed that incorporated the departure of studies from the ‘ideal’ experiment (a measure of experimental quality) and inverse variance (a measure of the study precision) as weighting coefficients. Greater weights were assigned to experiments with higher quality and/or with lower variance in the response variables. This double-weighting captures jointly the technical quality, ecological relevance and precision of estimates provided in each study. The blueprint and associated meta-analysis provide an improved baseline for the design of ecologically relevant and technically sound experiments to understand the effects of microplastics on single species, populations and, ultimately, entire ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights: • First study to compare microplastic effects over a wide biogeographical range • Comparison between natural inorganic microparticles and plastic microparticles • Significant effects on byssus production, respiration and clearance rates, but small effect sizes • No ecologically relevant difference between impact of plastic and natural inorganic microparticles on Mytilidae Abstract: Microplastics are ubiquitous in the marine environment and studies on their effects on benthic filter feeders at least partly revealed a negative influence. However, it is still unclear whether the effects of microplastics differ from those of natural suspended microparticles, which constitute a common stressor in many coastal environments. We present a series of experiments that compared the effects of six-week exposures of marine mussels to two types of natural particles (red clay and diatom shells) to two types of plastic particles (Polymethyl Methacrylate and Polyvinyl Chloride). Mussels of the family Mytilidae from temperate regions (Japan, Chile, Tasmania) through subtropical (Israel) to tropical environments (Cabo Verde) were exposed to concentrations of 1.5 mg/L, 15 mg/L and 150 mg/L of the respective microparticles. At the end of this period, we found significant effects of suspended particles on respiration rate, byssus production and condition index of the animals. There was no significant effect on clearance rate and survival. Surprisingly, we observed only small differences between the effects of the different types of particles, which suggests that the mussels were generally equally robust towards exposure to variable concentrations of suspended solids regardless of whether they were natural or plastic. We conclude, that microplastics and suspended solids elicit similar effects on the tested response variables, and that both types of microparticles mainly cause acute responses rather than more persistent carry-over effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The blue mussel (Mytilus species complex) is an important ecosystem engineer, and salinity can be a major abiotic driver of mussel functioning in coastal ecosystems. However, little is known about the interactive effects of abiotic drivers and trematode infection. This study investigated the combined effects of salinity and Himasthla elongata and Renicola roscovita metacercarial infections on the filtration capacity, growth, and condition of M. edulis from the Baltic Sea. In a laboratory experiment, groups of infected and uninfected mussels were exposed to a wide range of salinities (6−30, in steps of 3) for 1 mo. Shell growth was found to be positively correlated with salinity and optimal at 18−24 at the end of the experiment, imposed by constraints in shell calcification under lower salinities. Mussel shell growth was not affected by H. elongata infection. While salinity had only a minor effect on tissue dry weight, infected mussels had a significantly lower tissue dry weight than uninfected mussels. Most interestingly, the combination of salinity and trematode infections negatively affected the mussels’ condition indices at lower salinity levels (6 and 9), suggesting that trematode infections are more detrimental to mussels when combined with freshening. A significant positive effect of salinity on mussel filtration was found, with an initial optimum at salinity 18 shifting to 18−24 by the end of the experiment. These findings indicate that salinity and parasite infections act as synergistic stressors for mussels, and enhance the understanding of potential future ecosystem shifts under climate change-induced freshening in coastal waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights: • The fate of PS microbeads in an exposure experiment was assessed over 50 h. • Targeted and realized MP concentrations can differ largely in controlled laboratory experiments. • Clearance rates of mussels were significantly decreased in the presence of MP. • Reduction of clearance rates was more pronounced in mussels that had recently spawned. Abstract: The fate of microplastic particles (MP) in exposure experiments is mostly unclear. We measured the recovery of polystyrene (PS) microbeads, which were applied in various concentrations from 0.07 to 47.47 beads/ml, from the different compartments of an experimental system with mussels (Mytilus spp.). At the end of the experiment, we detected a significant loss of MP indicating that the mussels were exposed to less particles than intended. If such a discrepancy remains un-recognized by the experimenter, observed effects are related to an inaccurate particle concentration. Additionally, we observed reduced clearance rates of the mussels in the presence of MP and the effect size increased with increasing particle concentration. This effect was more pronounced in mussels that had recently spawned than in mussels that still had mature gonads. This is a hint that effects of MP may depend on the reproductive status of an organism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-14
    Description: Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyethylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, and shows great promise for rapid field measurements of microplastics in net-collected samples.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...