GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2017-12-19
    Beschreibung: Global mean surface warming has stalled since the end of the twentieth century1, 2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3, 4, 5, 6, 7, 8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing from the atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700 m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 104 (C9). pp. 20859-20861.
    Publikationsdatum: 2018-04-17
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Nature Publishing Group
    In:  Nature Geoscience, 3 (8). pp. 551-556.
    Publikationsdatum: 2019-09-23
    Beschreibung: Dense water formed over the Antarctic continental shelf rapidly descends into the deep ocean where it spreads throughout the global ocean as Antarctic Bottom Water1, 2. The coldest and most voluminous component of this water mass is Weddell Sea bottom water1, 3, 4, 5, 6, 7. Here we present observations over eight years of the temperature and salinity stratification in the lowermost ocean southeast of the South Orkney Islands, marking the export of Weddell Sea bottom water. We observe a pronounced seasonal cycle in bottom temperatures, with a cold pulse in May/June and a warm one in October/November, but the timing of these phases varies each year. We detect the coldest bottom water in 1999 and 2002, whereas there was no cold phase in 2000. On the basis of current velocities and water mass characteristics, we infer that the pulses originate from the southwest Weddell Sea. We propose that the seasonal fluctuations of Weddell Sea bottom-water properties are governed by the seasonal cycle of the winds over the western margin of the Weddell Sea. Interannual fluctuations are linked to the variability of the wind-driven Weddell Sea gyre and hence to large-scale climate phenomena such as the Southern Annular Mode and El Niño/Southern Oscillation.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-02-06
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Climate, 20 (11). pp. 2558-2571.
    Publikationsdatum: 2017-08-23
    Beschreibung: Shortly after the advent of the first imaging passive microwave sensor on board a research satellite an anomalous climate feature was observed within the Weddell Sea. During the years 1974–1976, a 250 × 103 km2 area within the seasonal sea ice cover was virtually free of winter sea ice. This feature, the Weddell Polynya, was created as sea ice formation was inhibited by ocean convection that injected relatively warm deep water into the surface layer. Though smaller, less persistent polynyas associated with topographically induced upwelling at Maud Rise frequently form in the area, there has not been a reoccurrence of the Weddell Polynya since 1976. Archived observations of the surface layer salinity within the Weddell gyre suggest that the Weddell Polynya may have been induced by a prolonged period of negative Southern Annular Mode (SAM). During negative SAM the Weddell Sea experiences colder and drier atmospheric conditions, making for a saltier surface layer with reduced pycnocline stability. This condition enables Maud Rise upwelling to trigger sustained deep-reaching convection associated with the polynya. Since the late 1970s SAM has been close to neutral or in a positive state, resulting in warmer, wetter conditions over the Weddell Sea, forestalling repeat of the Weddell Polynya. A contributing factor to the Weddell Polynya initiation may have been a La Niña condition, which is associated with increased winter sea ice formation in the polynya area. If the surface layer is made sufficiently salty due to a prolonged negative SAM period, perhaps aided by La Niña, then Maud Rise upwelling meets with positive feedback, triggering convection, and a winter persistent Weddell Polynya.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...