GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Economic Geology Publishing Company
    In:  In: Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings. Reviews in Economic Geology, 8 . Economic Geology Publishing Company, Littleton, CO, USA, pp. 181-200.
    Publication Date: 2016-08-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-21
    Description: Dissolved Pb and Nd isotope ratios of seawater, as recorded by chemical marine precipitates such as hydrogenetic ferromanganese crusts, have been used as paleoenvironmental proxy tracers. For the North Pacific, however, all ferromanganese crusts studied so far have either been subject to phosphatization or hydrothermal influence in their old part, or only the young parts have been analyzed. Thus, the Pb and Nd isotope compositions of North Pacific deep waters prior to ∼20 Ma are not well constrained. We present new results for three ferromanganese crusts, one of which (CJ01) shows no phosphatization and is located far away from the EPR. Its age is inferred to be ∼75 Ma and thus provides for the first time an opportunity to trace the Nd and Pb isotope evolution of central North Pacific seawater back to the latest Cretaceous. The three crusts, no matter whether phosphatized or not, display very similar Pb and Nd isotope trends with age, suggesting no modification of the Pb and Nd isotope distribution by post-depositional phosphatization. Our data suggest that dissolved Pb in deep waters of the central North Pacific over the Cenozoic and latest Cretaceous has mainly been derived from eolian dust and only to a minor extent from weathering of island arcs. For Pb these trends broadly resemble the Pb isotope evolution of the eolian silicate dust fraction of core LL44-GPC3 in the central North Pacific. We suggest that the isotope evolution of dissolved Pb in central North Pacific seawater has been mainly controlled by Pb released from eolian dust from North America prior to 50 Ma and after 40 Ma from Asia. In contrast, the Nd isotope time series of the crusts are by no means similar to the Nd isotope evolution of the silicate dust fraction in core GPC3, suggesting a decoupling from the Pb and negligible contributions from dust to the dissolved Nd in the central North Pacific deep water. The rise of Nd isotope ratios of Pacific seawater during the Cenozoic has most likely been caused by the increasing volcanic activity and erosion of the volcanic arcs around the Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-10
    Description: Abiogenic hydrocarbons are fundamentally important for understanding the deep microbial communities and the origin of life. The generation of abiogenic hydrocarbons was proposed to be limited to ultramafic-hosted hydrothermal systems, fueled by the serpentinization product H2. Here, we present the discharge of short-chain alkanes from an andesitic rock-hosted Lutao geothermal field in the north Luzon arc, carrying abiotic chemical and isotopic signals. These abiogenic hydrocarbons were generated from CO2-H2O-rich fluid inclusions, where the long-term storage since Lutao volcanism (~ 1.3 Ma) allowed overcoming the sluggish kinetics of CO2 to CH4 reduction at temperatures of 174 - 206 oC. Natural abiogenic production of hydrocarbons, therefore, can be more ubiquitous than previously thought. The hypothesis regarding the origin of methane in Earth’s early atmosphere and its implication to the origin of life may require reconsideration.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: In austral winter, biological productivity at the Angolan shelf reaches its maximum. The alongshore winds, however, reach their seasonal minimum suggesting that processes other than local wind‐driven upwelling contribute to near‐coastal cooling and upward nutrient supply, one possibility being mixing induced by internal tides (ITs). Here, we apply a three‐dimensional ocean model to simulate the generation, propagation, and dissipation of ITs at the Angolan continental slope and shelf. Model results are validated against moored acoustic Doppler current profiler and other observations. Simulated ITs are mainly generated in regions with a critical/supercritical slope typically between the 200‐ and 500‐m isobaths. Mixing induced by ITs is found to be strongest close to the coast and gradually decreases offshore thereby contributing to the establishment of cross‐shore temperature gradients. The available seasonal coverage of hydrographic data is used to design simulations to investigate the influence of seasonally varying stratification characterized by low stratification in austral winter and high stratification in austral summer. The results show that IT characteristics, such as their wavelengths, sea surface convergence patterns, and baroclinic structure, have substantial seasonal variations and additionally strong spatial inhomogeneities. However, seasonal variations in the spatially averaged generation, onshore flux, and dissipation of IT energy are weak. By evaluating the change of potential energy, it is shown, nevertheless, that mixing due to ITs is more effective during austral winter. We argue that this is because the weaker background stratification in austral winter than in austral summer acts as a preconditioning for IT mixing.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...