GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other types  (1)
Document type
Source
Keywords
Language
Years
  • 1
    Publication Date: 2022-09-22
    Description: Io's movement relative to the plasma in Jupiter's magnetosphere creates Alfvén waves propagating along the magnetic field lines which are partially reflected along their path. These waves are the root cause for auroral emission, which is subdivided into the Io Footprint (IFP), its tail and leading spot. New observations of the Juno spacecraft by Mura et al. (2018, https://doi.org/10.1126/science.aat1450) have shown puzzling substructure of the footprint and its tail. In these observations, the symmetry between the poleward and equatorward part of the footprint tail is broken and the tail spots are alternatingly displaced. We show that the location of these bright spots in the tail are consistent with Alfvén waves reflected at the boundary of the Io torus and Jupiter's ionosphere. Then, we investigate three different mechanisms to explain this phenomenon: (a) The Hall effect in Io's ionosphere, (b) travel time differences of Alfvén waves between Io's Jupiter facing and its opposing side and (c) asymmetries in Io's atmosphere. For that, we use magnetohydrodynamic simulations within an idealized geometry of the system. We use the Poynting flux near the Jovian ionosphere as a proxy for the morphology of the generated footprint and its tail. We find that the Hall effect is the most important mechanism under consideration to break the symmetry causing the “Alternating Alfvén spot street.” The travel time differences contributes to enhance this effect. We find no evidence that the inhomogeneities in Io's atmosphere contribute significantly to the location or shape of the tail spots.
    Description: Key Points: Hall effect in Io's ionosphere produces Poynting flux morphology similar to observed alternating Alfvén spot street in Io footprint tail (IFP). Alfvén wave travel time difference and asymmetries in Io's atmosphere are not sufficient to produce observed structures in IFP. IFP emission inter‐spot distance correlates with reflected Alfvén waves.
    Description: Regional Computing Center of the University of Cologne (RRZK)
    Description: European Research Council (ERC)
    Description: http://plutocode.ph.unito.it/download.html
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...