GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-29
    Description: A high-resolution multiproxy geochemical approach was applied to the sediments of Laguna Potrok Aike in an attempt to reconstruct moist and dry periods during the past 16 000 years in southeastern Patagonia. The age–depth model is inferred from AMS 14C dates and tephrochronology, and suggests moist conditions during the Lateglacial and early Holocene (16 000–8700 cal. BP) interrupted by drier conditions before the beginning of the Holocene (13 200–11 400 cal. BP). Data also imply that this period was a major warm phase in southeastern Patagonia and was approximately contemporaneous with the Younger Dryas chronozone in the Northern Hemisphere (12 700–11 500 cal. BP). After 8650 cal. BP a major drought may have caused the lowest lake level of the record. Since 7300 cal. BP, the lake level rose and was variable until the ‘Little Ice Age’, which was the dominant humid period after 8650 cal. BP.
    Keywords: Holocene ; Younger Dryas ; Lateglacial ; `Little Ice Age' ; lacustrine sediments ; geochemistry ; tephrochronology ; multiproxy approach ; Patagonia ; Argentina. ; 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-27
    Description: The Wüstebach catchment belongs to the German TERENO (Terrestrial Environmental Observatories) network and was partially deforested (~21%) by the Eifel National Park in 2013. In this data paper, we provide 11‐year precipitation and stream water isotope data and the corresponding runoff discharge rates recorded in the Wüstebach catchment (from 2009 to 2019). In addition, we provide an overview of available datasets and access information for environmental data of the Wüstebach catchment that are discoverable with associated metadata at the Web‐based TERENO data portal. We anticipate that this comprehensive data set will give new insights in how deforestation influences the hydrological system, for exampole, in terms of transit time distribution, fraction of young water and water flow paths at the catchment scale.
    Description: Helmholtz‐Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Description: Agrosphere Institute of the Forschungszentrum Jülich
    Keywords: 551.4 ; catchment ; deforestation ; runoff ; stable isotopes
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-03
    Description: Stable organic carbon and nitrogen isotopes can be used to interpret past vegetation patterns and ecosystem qualities. Here we present these proxies for two loess-palaeosol sequences from the southern Carpathian Basin to reconstruct the palaeoenvironment during the past 350 ka and establish regional commonalities and differences. Until now, isotopic studies on loess sequences from this region were only conducted on deposits from the last glacial cycle. We conducted methodological tests concerning the complete decalcification of the samples prior to stable isotope analyses. Two decalcification methods (fumigation method and wet chemical acidification), different treatment times, and the reproducibility of carbon isotope analyses were tested. Obtained results indicate that the choice of the decalcification method is essential for organic carbon stable isotope analyses of loess-palaeosol sequences because ratios vary by more than 10‰ between the wet chemical and fumigation methods, due to incomplete carbonate removal by the latter. Therefore, we suggest avoiding the fumigation method for studies on loess-palaeosol sequences. In addition, our data show that samples with TOC content 〈0.2% bear increased potential for misinterpretation of their carbon isotope ratios. For our sites, C3-vegetation is predominant and no palaeoenvironmental shifts leading to a change of the dominant photosynthesis pathway can be detected during the Middle to Late Pleistocene. Furthermore, the potential for further stable nitrogen isotope studies is highlighted, since this proxy seems to reflect especially past precipitation patterns and reveals favourable conditions in the southern Carpathian Basin, especially during interstadials.
    Keywords: 551 ; southern Carpathian Basin ; loess-palaeosol sequences ; stable isotope analyses ; Pleistocene ecosystem reconstruction
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...