GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-09-13
    Description: At the Blanco transform fault system (BTFS) off Oregon, 138 local earthquakes and 84 double‐couple focal mechanisms from ocean‐bottom‐seismometer recordings jointly discussed with bathymetric features reveal a highly segmented transform system without any prominent fracture zone traces longer than 100 km. In the west, seismicity is focused at deep troughs (i.e., the West and East Blanco, and Surveyor Depressions). In the east, the BTFS lacks a characteristic transform valley and instead developed the Blanco Ridge, which is the most seismically active feature, showing strike‐slip and dip‐slip faulting. Sandwiched between the two main segments of the BTFS is the Cascadia Depression, representing a short intra‐transform spreading segment. Seismic slip vectors reveal that stresses at the eastern BTFS are roughly in line with plate motion. In contrast, stresses to the west are clockwise skewed, indicating ongoing reorganization of the OTF system. As we observed no prominent fracture zones at the BTFS, plate tectonic reconstructions suggest that the BTFS developed from non‐transform offsets rather than pre‐existing transform faults during a series of ridge propagation events. Our observations suggest that the BTFS can be divided into two oceanic transform systems. The eastern BTFS is suggested to be a mature transform plate boundary since ∼0.6 Ma. In contrast, the western BTFS is an immature transform system, which is still evolving to accommodate far‐field stress change. The BTFS acts as a natural laboratory to yield processes governing the development of oceanic transform faults.
    Description: Plain Language Summary: The Blanco transform fault system (BTFS) northwest off the coast of Oregon is seismically very active. We used 1 year of ocean bottom seismometer data collected between September 2012 and October 2013 to locate 138 local earthquakes. The events align perfectly with the morphologic features of the BTFS, dividing the BTFS into five transform segments and two short intra‐transform spreading centers. Furthermore, we observe different seismotectonic behaviors of the western and eastern BTFS based on the along‐strike variation in morphology, magnetization, focal depth distribution, and strain partitioning. Although many segmented oceanic transform systems were formed from a single transform fault in response to rotations in plate motion, the BTFS turns out to be originated from non‐transform offsets between ridge segments, as we observed no prominent fracture zone traces neither in morphology nor gravity field data. A clockwise shift in the Juan de Fuca/Pacific pole of rotation at ∼5 Ma followed by a series of ridge propagation events initiated the formation of the BTFS, integrated each segment of the BTFS by shortening the ridge segments in between. Our observations suggest that the Blanco Ridge and the Gorda transform segment in the eastern BTFS were formed at ∼1.6 and 0.6 Ma, respectively, and ever since, the eastern BTFS became a mature transform boundary. In contrast, seismic slip vectors comparing to plate motion directions reveal that stresses in the western BTFS are systematically skewed, suggesting the immature transform plate boundary is still adjusting to the new stress regime.
    Description: Key Points: Local seismicity of the Blanco transform fault system (BTFS) reveals along‐strike variations dominated by strike‐slip and oblique dip‐slip. The BTFS developed from non‐transform offsets rather than discrete transform faults in response to plate rotation and ridge propagation. The BTFS consists of a mature plate boundary in the east and an immature system in the west, separated by a central spreading center.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: https://doi.org/10.7914/SN/X9_2012
    Description: https://www.gmrt.org/GMRTMapTool/
    Description: https://mrdata.usgs.gov/magnetic/
    Keywords: ddc:551.22 ; Blanco transform fault system ; local seismicity ; tectonic evolution ; transform plate boundary
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: report
    Keywords: 551.4 ; 551.22 ; 550
    Language: English
    Type: article , publishedVersion
    Format: 98 S.
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-22
    Description: Oceanic transform faults (OTFs) are an inherent part of seafloor spreading and plate tectonics, whereas the process controlling their morphology remains enigmatic. Here, we systematically quantify variations in transform morphology and their dependence on spreading rate and age‐offset, based on a compilation of shipborne bathymetric data from 94 OTFs at ultraslow‐ to intermediate‐spreading ridges. In general, the length, width and depth of OTFs scale systematically better with age‐offset rather than spreading rate. This observation supports recent geodynamic models proposing that cross‐transform extension scaling with age‐offset, is a key process of transform dynamics. On the global scale, OTFs with larger age‐offsets tend to have longer, wider, and deeper valleys. However, at small age‐offsets (〈5 Myr), scatters in the depth and width of OTFs increase, indicating that small age‐offset OTFs with weak lithospheric strength are easily affected by secondary tectonic processes.
    Description: Plain Language Summary: In the past 5 decades, studies on oceanic transform faults (OTFs) have revealed significant complexity in their morphology, which calls for detailed quantitative analysis to study the processes controlling the morphology of OTFs. Using the most complete and advanced compilation of bathymetric data from ultraslow‐ to intermediate‐spreading ridges, we parameterized the morphological characteristics of OTFs and extracted length, width and depth for each transform fault from the compiled bathymetric data. Moreover, correlations between these morphological parameters and related tectonic factors (e.g., spreading rate, age‐offset) were investigated in this study. We find that correlations between morphological features and spreading rate are rather weak. Comparison of correlations suggests that age‐offset scales better with the morphological parameters, along with scatters mostly at small age‐offsets, indicating small‐age‐offset OTFs are unstable due to their weak lithospheric strength. Our observation evidences extensional tectonics at OTFs.
    Description: Key Points: We compiled multibeam bathymetric data of 94 oceanic transform faults (OTFs) to quantify their morphological characteristics. Morphology of OTFs is dominated by age‐offset rather than spreading rate. Transform valleys get systematically deeper and wider with increasing age‐offset, implying extensional tectonics at OTFs.
    Description: China Scholarship Council
    Description: http://doi.org/10.5281/zenodo.4774185
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-01
    Description: About 25% of the Earth’s mid-ocean ridges spread at ultraslow rates of less than 20 mm/yr. However, most of these ultraslow spreading ridges are located in geographically remote areas, which hamper investigation. Consequently, how the crust forms and ages at such spreading centres, which traditional models predict to be magma-starved and cold, remains poorly understood. One of the most accessible ultra-slow spreading centres is the Mid Cayman Spreading Centre (MCSC), in the Caribbean Sea, with spreading rates of ~15-17 mm/yr. CAYSEIS project was proposed to survey the Cayman Trough area in order to obtain new data that constraints the nature of the crust, tectonic structures, lithologies outcropping and hydrothermal processes taking place in this area. Understanding the sub-seabed geophysical structure of the MCSC is key to understanding not only the lithologies and structures exposed at the seabed, but more fundamentally, how they are related at depth and what role hydrothermal fluid flow plays in the geodynamics of ultraslow spreading. CAYSEIS was a joint and multidisciplinary programme of German, British and US American top tier scientists designed for the obtaining of a new high-quality dataset, including 3D Wide-Angle Seismic (WAS), magnetic, gravimetric and seismological data. During the CAYMAN project, we took leverage of the CAYSEIS dataset to invert a 3D tomographic model of the Cayman Trough lithosphere using the Tomo3D code (Meléndez et al., 2015; 2019). This is one of the first times that the Tomo3D code is used for 3D inversion of real datasets. Thus, we are checking our results comparing them with tomographic inversions of 2D lines and testing the different parameters to obtain the more accurate and higher resolution model as possible. The results of this experiment will show not only the lithospheric structure along and across the MSCS, including the exhumed Ocean Core Complexes in the surrounding areas, but the 3D lithospheric configuration of the region which is important to understand the crustal formation processes and the evolution of ultra-slow spreading settings.
    Description: Poster
    Description: poster
    Keywords: ddc:550 ; 3D tomography ; crustal characterization ; ultra-slow spreading ; Cayman Trough
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...