GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other types  (2)
  • 1
    Publication Date: 2023-06-17
    Description: The composition of meta-gabbro and meta-basalt occurring abundant and widespread in all nappes of the nappe stack exposed in the Zermatt region of the Western Alp shows distinct patterns related to the geodynamic origin of metamorphic basic rocks. Eclogitic meta-basalts of the ophiolitic Zermatt-Saas Unit (ZSU) show enriched MORB signatures. The meta-basalts (eclogites) of the continental fragment of the Theodul Glacier Unit (TGU) derive from pre-Alpine metamorphic continental intraplate basalts. Meta-basalts (eclogites) from the continental basement of the Siviez-Mischabel nappe (SMN) derive from MORB thus a genetic relation to the TGU eclogites can be excluded. All basic igneous rocks experienced post-magmatic alteration by fluid-rock interaction ranging from processes at the seafloor, in the shallow crust, during subduction zone hydration, in the exhumation channel and late Alpine regional metamorphisms. The consequences of these alteration processes can be identified at various levels in the rock composition data. It was found that the REE data are little affected by fluid-rock alteration. Some trace elements, notably Cs, Rb, and Ba are typically massively altered relative to igneous compositions in all three groups of meta-basalts. Generally, meta-basalts from the TGU and the SMN preserved the features of the original composition whilst the ZSU meta-volcanic rocks experienced massive alteration. For the ZSU meta-volcanic rocks it is evident that Zr was gained and Y lost during high-pressure fluid-rock interaction indicating a mobile behavior of the two elements during HP-metamorphism in contrast to their behavior in hydrothermal near-surface fluid-rock interaction.
    Description: Albert-Ludwigs-Universität Freiburg im Breisgau (1016)
    Keywords: ddc:552.4 ; Meta-basalt ; Meta-gabbro ; Trace elements ; REE patterns ; Ophiolite
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-26
    Description: Garnet is a prototypical mineral in metamorphic rocks because it commonly preserves chemical and textural features that can be used for untangling its metamorphic development. Large garnet porphyroblasts may show extremely complex internal structures as a result of a polycyclic growth history, deformation, and modification of growth structures by intra- and intercrystalline diffusion. The complex internal structure of garnet porphyroblasts from garnet–phengite schists (GPS) of the Zermatt area (Western Alps) has been successfully decoded. The centimetre-sized garnet porphyroblasts are composed of granulite facies garnet fragments overgrown by a younger generation of grossular-rich eclogite facies garnet. The early granulite facies garnet (G-Grt) formed from low-P, high-T metamorphism during a pre-Alpine orogenic event. The late garnet (E-Grt) is typical of high-pressure, low-temperature (HPLT) metamorphism and can be related to Alpine subduction of the schists. Thus, the garnet of the GPS are polycyclic (polymetamorphic). G-Grt formation occurred at ~670 MPa and 780°C, E-Grt formed at ~1.7 GPa and 530°C. The G-Grt is relatively rich in Prp and poor in Grs, while E-Grt is rich in Grs and poor in Prp. The Alm content (mol.%) of G-Grt is 68 of E-Grt 55. After formation of E-Grt between and around fragmented G-Grt at 530°C, the GPS have been further subducted and reached a maximum temperature of 580°C before exhumation started. Garnet composition profiles indicate that the initially very sharp contacts between the granulite facies fragments of G-Grt and fracture seals of HPLT garnet (E-Grt) have been modified by cation diffusion. The profiles suggest that Ca did not exchange at the scale of 1 µm, whereas Fe and Mg did efficiently diffuse at the derived maximum temperature of 580°C for the GPS at the scale of 7–8 µm. The Grt–Grt diffusion profiles resulted from spending c. 10 Ma at 530–580°C along the P–T–t path. The measured Grt composition profiles are consistent with diffusivities of log DMgFe = −25.8 m2/s from modelled diffusion profiles. Mg loss by diffusion from G-Grt is compensated by Fe gain by diffusion from E-Grt to maintain charge balance. This leads to a distinctive Fe concentration profile typical of uphill diffusion.
    Keywords: 549 ; diffusion ; eclogite facies ; garnet ; porphyroblast ; uphill diffusion
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...