GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (52)
Document type
Source
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Springer, Karin; Lütz, Cornelius; Lütz-Meindl, Ursula; Wendt, Angela; Bischof, Kai (2017): Hyposaline conditions affect UV susceptibility in the Arctic kelp Alaria esculenta (Phaeophyceae). Phycologia, 56(6), 675-685, https://doi.org/10.2216/16-122.1
    Publication Date: 2023-03-23
    Description: The kelp Alaria esculenta represents a key species in high Arctic marine fjord ecosystems. However, the European Arctic is currently experiencing extensive environmental change. Glacial fjord systems, such as Kongsfjorden (Spitsbergen, Svalbard), are subjected to rising temperature, increased freshwater inflow from glaciers and melting snow and a changing ultraviolet (UV) radiation regime related to stratospheric ozone depletion. Thus, in addition to natural seasonality, sessile organisms require acclimation in order to adapt to an environment in transition. We examined the physiological and ultrastructural responses of A. esculenta to the combined exposure to hyposalinity and UV radiation. Photosynthetic quantum yield slightly decreased during a low-salinity treatment of 7 d. Exposure to UV radiation also lowered quantum yield, but specimens previously treated with hyposalinity were significantly less susceptible to UV than nontreated individuals. Concomitant with a loss of chlorophyll during the hyposaline treatment, phlorotannin and antioxidant contents were maintained, and samples treated with low salinities exhibited higher UV-screening characteristics as demonstrated by significantly higher absorption ratios at 300/680 nm. Ultrastructural analyses revealed a treatment-dependent swelling of cell walls and accumulations of phlorotannin-containing vesicles. Our findings point to a strategy by which kelps apply a fast and cost-efficient redistribution of phlorotannins rather than increased synthesis as a general stress response to different environmental drivers in contrast to stress-specific responses. The notion that acclimation to one stressor (low salinity) reflects increased tolerance towards a second stressor (UV radiation) supports the concept of 'cross-acclimation' as established for higher plants but not yet for seaweeds.
    Keywords: Antioxidant capacity, in Trolox Equivalents; beta-Carotene; Chlorophyll a; Chlorophyll c1+c2; EXP; Experiment; Family; Fucoxanthin; Initial slope of rapid light curve; KongsfjordenOA; Light saturation point; Maximal electron transport rate; Maximum photochemical quantum yield of photosystem II; Phlorotannins; Ratio; Species; Treatment; Violaxanthin + Antheraxanthin + Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-04-05
    Description: Contrasting models predict two different climate change scenarios for the Southern Ocean (SO), forecasting either less or stronger vertical mixing of the water column. To investigate the responses of SO phytoplankton to these future conditions, we sampled a natural diatom dominated (63%) community from today's relatively moderately mixed Drake Passage waters with both low availabilities of iron (Fe) and light. The phytoplankton community was then incubated at these ambient open ocean conditions (low Fe and low light, moderate mixing treatment), representing a control treatment. In addition, the phytoplankton was grown under two future mixing scenarios based on current climate model predictions. Mixing was simulated by changes in light and Fe availabilities. The two future scenarios consisted of a low mixing scenario (low Fe and higher light, low mixing treatment) and a strong mixing scenario (high Fe and low light, strong mixing treatment). In addition, communities of each mixing scenario were exposed to ambient and low pH, the latter simulating ocean acidification (OA). The effects of the scenarios on particulate organic carbon (POC) production, trace metal to carbon ratios, photophysiology and the relative numerical contribution of diatoms and nanoflagellates were assessed. During the first growth phase, at ambient pH both future mixing scenarios promoted the numerical abundance of diatoms (~75%) relative to nanoflagellates. This positive effect, however, vanished in response to OA in the communities of both future mixing scenarios (~65%), with different effects for their productivity. At the end of the experiment, diatoms remained numerically the most abundant phytoplankton group across all treatments (~80%). In addition, POC production was increased in the two future mixing scenarios under OA. Overall, this study suggests a continued numerical dominance of diatoms as well as higher carbon fixation in response to both future mixing scenarios under OA, irrespective of different changes in light and Fe availability.
    Keywords: Carbon, organic, particulate, net production; Carbon, organic, particulate, net production, standard deviation; CO2; compiled data; diatoms; DrakePassage; Experiment/study setup; Experimental treatment; Growth phase; iron; Iron/Carbon ratio; Iron/Carbon ratio, standard deviation; Light; mixing; Multiple stressors; Ocean acidification; pH; Photochemical quantum yield; Photochemical quantum yield, standard deviation; Pigments, light harvesting/light protective ratio; Pigments, light harvesting/light protective ratio, standard deviation; Scenario; Southern Ocean
    Type: Dataset
    Format: text/tab-separated-values, 168 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-05
    Description: Contrasting models predict two different climate change scenarios for the Southern Ocean (SO), forecasting either less or stronger vertical mixing of the water column. To investigate the responses of SO phytoplankton to these future conditions, we sampled a natural diatom dominated (63%) community from today's relatively moderately mixed Drake Passage waters with both low availabilities of iron (Fe) and light. The phytoplankton community was then incubated at these ambient open ocean conditions (low Fe and low light, moderate mixing treatment), representing a control treatment. In addition, the phytoplankton was grown under two future mixing scenarios based on current climate model predictions. Mixing was simulated by changes in light and Fe availabilities. The two future scenarios consisted of a low mixing scenario (low Fe and higher light, low mixing treatment) and a strong mixing scenario (high Fe and low light, strong mixing treatment). In addition, communities of each mixing scenario were exposed to ambient and low pH, the latter simulating ocean acidification (OA). The effects of the scenarios on particulate organic carbon (POC) production, trace metal to carbon ratios, photophysiology and the relative numerical contribution of diatoms and nanoflagellates were assessed. During the first growth phase, at ambient pH both future mixing scenarios promoted the numerical abundance of diatoms (~75%) relative to nanoflagellates. This positive effect, however, vanished in response to OA in the communities of both future mixing scenarios (~65%), with different effects for their productivity. At the end of the experiment, diatoms remained numerically the most abundant phytoplankton group across all treatments (~80%). In addition, POC production was increased in the two future mixing scenarios under OA. Overall, this study suggests a continued numerical dominance of diatoms as well as higher carbon fixation in response to both future mixing scenarios under OA, irrespective of different changes in light and Fe availability.
    Keywords: CO2; compiled data; diatoms; DrakePassage; Experimental treatment; Incubation duration; iron; Light; mixing; Multiple stressors; Nitrate; Nitrate, standard deviation; Ocean acidification; pH; Silicate; Silicate, standard deviation; Southern Ocean
    Type: Dataset
    Format: text/tab-separated-values, 343 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: Polar Regions are facing rapid temperature increase. Combined with other factors temperature increase might have a strong impact on foundation species in Arctic shallow-water coastal ecosystems, such as the abundant kelp Saccharina latissima. We ran two short-term 2-factor experiments with field samples from Kongsfjorden (Svalbard) to reveal the impact of temperature increase in summer combined with hyposalinity (temperature × salinity) or nutrient enrichment (temperature × nutrients) and analyzed different biochemical and physiological parameters. The experiments were conducted with field samples at AWIPEV Station in Ny-Ålesund, Svalbard (Spitsbergen) in June/July 2019. As physiological parameter, size and the maximum photosynthetic quantum yield of photosystem II (Fv/Fm; Imaging-PAM, Walz GmbH Mess- und Regeltechnik, Effeltrich, Germany) were monitored every second day. For growth, the size of the algal discs was analyzed with ImageJ (Version 1.52a). For better comparison of the physiological parameters, Fv/Fm and growth the initial size of the different treatments was adjusted to 100% and size of each sample as % of initial was calculated. The C:N ratio, total nitrogen and total carbon content were analyzed with an elemental analyzer. Mannitol, as well as absolute pigment concentrations were analyzed using a HPLC. The de-expoxidation state of the xanthophyll cycle (DPS) and chlorophyll a : accessory pigment ratio calculated afterwards. Phlorotannins were analyzed using the photometric Folin-Ciocalteu method.
    Keywords: C:N; interactive effects; kelp; Mannitol; nutrients; pigments; Salinity; Temperature
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yildiz, Gamse; Hofmann, Laurie C; Bischof, Kai; Dere, Sükran (2013): Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2. Botanica Marina, 56(2), 161-168, https://doi.org/10.1515/bot-2012-0216
    Publication Date: 2023-02-24
    Description: Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous algae respond to UVR and ocean acidification. Therefore, we conducted an experiment to determine the effects of UVR and ocean acidification on the calcified rhodophyte Corallina officinalis using CO2-enriched cultures with and without UVR exposure. Low pH increased the relative electron transport rates (rETR) but decreased the CaCO3 content and had a miniscule effect on growth. However, UVA (4.25 W m-2) and a moderate level of UVB (0.5 W m-2) increased the rETR and growth rates in C. officinalis, and there was a significant interactive effect of pH and UVR on UVR-absorbing compound concentrations. Thus, at low irradiance, pH and UVR interact in a way that affects the multiple physiological responses of C. officinalis differently. In particular, changes in the skeletal content induced by low pH may affect how C. officinalis absorbs and uses light. Therefore, the light quality used in ocean acidification experiments will affect the predictions of how calcified macroalgae will respond to elevated CO2.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hassenrück, Christiane; Hofmann, Laurie C; Bischof, Kai; Ramette, Alban (2015): Seagrass biofilm communities at a naturally CO2-rich vent. Environmental Microbiology Reports, https://doi.org/10.1111/1758-2229.12282
    Publication Date: 2023-02-24
    Description: Seagrass meadows are a crucial component of tropical marine reef ecosystems. The seagrass plants are colonized by a multitude of epiphytic organisms that contribute to determining the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-05-12
    Keywords: Carlini_Base_C2; Carlini/Jubany Station; DATE/TIME; Jubany; Jubany_Station_C2; Potter Cove, King George Island, Antarctic Peninsula; Radiation, photosynthetically active; Research station; RS
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-23
    Keywords: 6,9,12,15-Hexadecatetraenoic acid; all-cis-5,8,11,14,17-Eicosapentaenoic acid; all-cis-5,8,11,14-Eicosatetraenoic acid; all-cis-9,12,15-Octadecatrienoic acid; all-cis-9,12-Octadecadienoic acid; Carlini_Base_C2; Carlini/Jubany Station; cis-11-Icosenoic acid; cis-11-Octadecenoic acid; cis-13-Docosenoic acid; cis-15-Docosenoic acid; cis-9-Octadecenoic acid; Day of experiment; Experimental treatment; Fatty acids, standard deviation; Gas-liquid chromatography; Hexadecanoic acid; Icosanoic acid; Jubany; Jubany_Station_C2; Lipids, total; Lipids, total, standard deviation; Octadecanoic acid; Palmitoleic acid; Pentadecanoic acid; Potter Cove, King George Island, Antarctic Peninsula; Research station; RS; Species; Tetradecanoic acid
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Becker, Susanne; Walter, Bettina; Bischof, Kai (2009): Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. Botanica Marina, 52(6), 609-616, https://doi.org/10.1515/BOT.2009.079
    Publication Date: 2023-10-28
    Description: Organisms populating benthic shallow water systems of both polar regions are adapted to a particularly harsh environment. We studied effects of freezing and the combination of high light intensities and low water temperatures on photosynthesis of key macroalgal species from the Arctic intertidal (Fucus distichus) and Antarctic subtidal (Palmaria decipiens). Photosynthetic activity of F. distichus specimens was monitored during the freezing process; there was a marked decrease in quantum yield with decreasing temperatures, and a rapid recovery as soon as temperatures increased again. Thus, under the experimental conditions tested, no indication of photodamage was found. Specimens of Palmaria were exposed to a combination of high light intensities and low water temperatures. A persistent impairment of photosynthetic activity occurred at 0°C at light intensities of 400 µmol photons m-2 s-1. In all treatments, there was a decreasing ratio of phycobiliproteins to chlorophyll a. Overall, the two studies provide baseline data for interpreting physiological responses of two important macroalgal species in an extreme environment, the polar coastal ecosystem.
    Keywords: Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158
    Type: Dataset
    Format: application/zip, 1.2 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-11-10
    Description: Kelps act as ecosystem engineers and foundation species on many polar rocky shore coastlines. The main driver for their vertical and latitudinal distribution is the underwater light climate and temperature. Both are changing drastically in the Arctic in the course of global climate change. It was the aim of this study to analyse the effects of rising temperature and deteriorating underwater light climate on the potential habitat of kelps in the Arctic. The analyses of the underwater light climate in Arctic Kongsfjorden, Svalbard in July 2021. We divided Kongsfjorden in three areas, which are influenced by the run-off of sea-terminating glaciers (station A–J), the run-off of a land-terminating glacier (station K–O) and mostly clear water (control, station P–Q). In each area, we measured the spectrally resolved underwater light climate in the UV-B radiation (280-320 nm), UV-A radiation (320-400 nm) and photosynthetically active radiation (PAR, 400-700 nm) with a RAMSES-ACC-UV/VIS radiometer (TriOS Optical Sensor, Oldenburg, Germany) from 0–12.5 m. UV-B, UV-A and PAR were calculated by integrating the irradiance over the respective wavelengths.
    Keywords: Arctic Amplification; Arctic Biodiversity & Livelihoods; biogeography; Biomass; Climate change; Compensation irradiance; DATE/TIME; DEPTH, water; Event label; FACE-IT; glacier; Kongsfjorden_ULC_A; Kongsfjorden_ULC_B; Kongsfjorden_ULC_C; Kongsfjorden_ULC_D; Kongsfjorden_ULC_E; Kongsfjorden_ULC_F; Kongsfjorden_ULC_G; Kongsfjorden_ULC_H; Kongsfjorden_ULC_I; Kongsfjorden_ULC_J; Kongsfjorden_ULC_K; Kongsfjorden_ULC_L; Kongsfjorden_ULC_M; Kongsfjorden_ULC_N; Kongsfjorden_ULC_O; Kongsfjorden_ULC_P; Kongsfjorden_ULC_Q; Kongsfjorden, Svalbard; Latitude of event; LiCor Li-1400 Data Logger, Nebraska, USA; Light; log-radiation, photosynthetically active; Longitude of event; Macroalgae; Photosynthesis; pigments; Radiation, photosynthetically active; RAMSES ACC-2-VIS, TriOS GmbH; RAMSES-ACC hyperspectral radiometer, TriOS; Refractometer; Respiration; Salinity; Station A; Station B; Station C; Station D; Station E; Station F; Station G; Station H; Station I; Station J; Station K; Station L; Station M; Station N; Station O; Station P; Station Q; Surface irradiance; Ultraviolet-a radiation; Ultraviolet-b radiation
    Type: Dataset
    Format: text/tab-separated-values, 1039 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...