GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • GEOMAR Katalog / E-Books  (3)
Publikationsart
  • GEOMAR Katalog / E-Books  (3)
  • Artikel  (12)
Datenquelle
Sprache
Erscheinungszeitraum
DDC
  • 1
    Online-Ressource
    Online-Ressource
    Norwood :Artech House,
    Schlagwort(e): Energy harvesting. ; Energy storage -- Equipment and supplies. ; Energy storage. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This unique resource provides a detailed understanding of the options for harvesting energy from localized, renewable sources to supply power to autonomous wireless systems. You are introduced to a variety of types of autonomous system and wireless networks and discover the capabilities of existing battery-based solutions, RF solutions, and fuel cells. The book focuses on the most promising harvesting techniques, including solar, kinetic, and thermal energy. You also learn the implications of the energy harvesting techniques on the design of the power management electronics in a system. This in-depth reference discusses each energy harvesting approach in detail, comparing and contrasting its potential in the field.
    Materialart: Online-Ressource
    Seiten: 1 online resource (303 pages)
    Ausgabe: 1st ed.
    ISBN: 9781596937192
    DDC: 333.794
    Sprache: Englisch
    Anmerkung: Intro -- Energy Harvesting for Autonomous Systems -- Contents -- Chapter 1 Introduction -- 1.1 Background and Motivation -- 1.2 Typical System Architecture -- 1.3 Intended Readership for This Book -- Reference -- Chapter 2 Wireless Devices and Sensor Networks -- 2.1 Introduction -- 2.2 Energy Requirements of Autonomous Devices -- 2.2.1 From Mobile Phones to MP3 Players -- 2.2.2 Radio Frequency Identification (RFID) -- 2.2.3 Wireless Sensor Networks -- 2.3 Enabling Technologies: Devices and Peripherals -- 2.3.1 Low-Power Microcontrollers and Transceivers -- 2.3.2 Sensors, Peripherals, and Interfaces -- 2.4 Wireless Communication -- 2.4.1 Communication Protocols and Power Requirements -- 2.4.2 Energy-Aware Communication Protocols -- 2.5 Energy-Awareness in Embedded Software -- 2.5.1 Operating Systems and Software Architectures -- 2.6 Alternative Nonrenewable Power Sources -- 2.6.1 Direct Transmission -- 2.7 Discussion -- References -- Chapter 3 Photovoltaic Energy Harvesting -- 3.1 Introduction -- 3.2 Background -- 3.2.1 Semiconductor Basics -- 3.3 Solar Cell Characteristics -- 3.4 Module Characteristics -- 3.5 Irradiance Standards -- 3.5.1 Outdoor Operation -- 3.5.2 Indoor Operation -- 3.6 Efficiency Losses -- 3.6.1 Intrinsic Losses -- 3.6.2 Extrinsic Losses -- 3.6.3 Module Losses -- 3.7 Device Technologies -- 3.7.1 Silicon Wafers -- 3.7.2 Single Crystal and Multicrystalline Devices -- 3.7.3 Amorphous Silicon -- 3.7.4 Thin Film Polycrystalline Silicon -- 3.7.5 Multijunction Silicon -- 3.7.6 Cadmium Telluride/Cadmium Sulphide -- 3.7.7 Copper Indium (Gallium) Disselenide -- 3.7.8 Single and Multijunction III-V Cells -- 3.7.9 Emergent Technologies -- 3.8 Photovoltaic Systems -- 3.8.1 Basic System -- 3.8.2 Charge Controllers -- 3.8.3 DC-DC Converters and Maximum Power Point Tracking -- 3.8.4 Miniaturization and Low-Power Systems. , 3.8.5 Device Technology -- 3.8.6 Systems Considerations -- 3.9 Summary -- References -- Chapter 4 Kinetic Energy Harvesting -- 4.1 Introduction -- 4.2 Kinetic Energy-Harvesting Applications -- 4.2.1 Human -- 4.2.2 Industrial -- 4.2.3 Transport -- 4.2.4 Structural -- 4.3 Inertial Generators -- 4.4 Transduction Mechanisms -- 4.4.1 Piezoelectric Generators -- 4.4.2 Electromagnetic Transduction -- 4.4.3 Electrostatic Generators -- 4.4.4 Transduction Damping Coefficients -- 4.4.5 Microscale Implementations -- 4.5 Operating Frequency Range -- 4.5.1 Frequency Tuning -- 4.5.2 Strategies to Broaden the Bandwidth -- 4.6 Rotary Generators -- 4.7 Example Devices -- 4.7.1 Human-Powered Harvesters -- 4.7.2 Conventional Generators for Industrial and Transport Applications -- 4.7.3 Microscale Generators -- 4.7.4 Tuneable Generators -- 4.8 Conclusions and Future Possibilities -- 4.8.1 Piezoelectric Generators -- 4.8.1 Piezoelectric Generators -- 4.8.2 Electromagnetic Generators -- 4.8.3 Electrostatic Generators -- 4.8.4 Summary -- Acknowledgments -- References -- Chapter 5 Thermoelectric Energy Harvesting -- 5.1 Introduction -- 5.2 Principles of Thermoelectric Devices -- 5.2.1 Thermoelectric Effects -- 5.2.2 Thermoelectric Devices -- 5.3 Infl uence of Materials, Contacts, and Geometry -- 5.3.1 Selection of Thermoelectric Materials -- 5.3.2 Thermal and Electrical Contacts -- 5.3.3 Geometry Optimization -- 5.3.4 Heat Exchangers -- 5.4 Existing and Future Capabilities -- 5.4.1 Low Power Systems -- 5.4.2 Waste Heat Recovery -- 5.4.3 Symbiotic Cogeneration System -- 5.4.4 Commercial Thermoelectric Module Suppliers -- 5.5 Summary -- References -- Chapter 6 Power Management Electronics -- 6.1 Introduction -- 6.1.1 Interface Circuit Impedance Matching -- 6.1.2 Energy Storage -- 6.1.3 Output Voltage Regulation -- 6.1.4 Overview. , 6.2 Interface Electronics for Kinetic Energy Harvesters -- 6.2.1 Electromagnetic Harvesters -- 6.2.2 Example of a Complete Power Electronics System for a Continually Rotating Energy Harvester -- 6.2.3 Piezoelectric Harvesters -- 6.2.4 Electrostatic Harvesters -- 6.3 Interface Circuits for Thermal and Solar Harvesters -- 6.3.1 Thermal -- 6.3.2 Power Electronics for Photovoltaics -- 6.4 Energy Storage Interfaces -- 6.4.1 Output Voltage Regulation -- 6.5 Future Outlook -- 6.6 Conclusions -- References -- Chapter 7 Energy Storage -- 7.1 Introduction -- 7.1.1 Battery Operating Principles -- 7.1.2 Electrochemical Capacitor Operating Principles -- 7.1.3 Comparison of Energy Storage Devices -- 7.2 Micropower Supply for Wireless Sensor Devices -- 7.2.1 Microenergy Storage Considerations -- 7.2.2 Materials Considerations for Microbatteries -- 7.2.3 Geometry and Processing Considerations for Microbatteries -- 7.3 Implementations of 2D Microbatteries -- 7.3.1 Thin Film Solid-State Microbatteries -- 7.3.2 Thick Film Microbatteries -- 7.3.3 Concluding Remarks for 2D Microbatteries -- 7.4 Three-Dimensional Microbatteries -- 7.4.1 3D Microbattery Architectures with a Discontinuous Element -- 7.4.2 3D Microbattery Architectures with Continuous Elements -- 7.4.3 Prospects for Three-Dimensional Microbattery Implementation -- 7.5 Electrochemical Microcapacitors -- 7.5.1 Electrochemical Capacitor Materials -- 7.5.2 Microcapacitor Prototypes -- 7.5.3 Conclusions and Prospects for Microcapacitors -- 7.6 Conclusion -- References -- Chapter 8 Case Study: Adaptive Energy-Aware Sensor Networks -- 8.1 Introduction -- 8.2 Requirements -- 8.3 Energy Harvesting Sensor Node Hardware Design -- 8.3.1 Node Core Design -- 8.3.2 Overview of Modular Design -- 8.3.3 Choice of Microprocessor -- 8.3.4 Energy Multiplexer Subsystem -- 8.3.5 Supercapacitor Energy Storage Module. , 8.3.6 Solar Energy-Harvesting Module -- 8.3.7 Vibration Energy-Harvesting Module -- 8.3.8 Thermal Energy-Harvesting Module -- 8.3.9 Wind Energy-Harvesting Module -- 8.3.10 Other Energy-Harvesting and Storage Modules -- 8.3.11 Plug-and-Play Capabilities -- 8.3.12 Sensor Module -- 8.3.13 Built-In Sensing Capabilities -- 8.3.14 Energy Effi cient Hardware Design -- 8.4 Energy-Harvesting Sensor Node Demonstration Overview -- 8.5 Energy-Harvesting Sensor Node Software Design -- 8.5.1 Node Software -- 8.5.2 Intelligent Energy Management -- 8.5.3 Information Reported by the Energy-Harvesting Node -- 8.6 Energy-Aware, Energy-Harvesting Node Demonstration -- 8.6.1 Supporting Nodes for Demonstration -- 8.6.2 Energy Sources for Demonstration -- 8.6.3 Demonstration Sequence -- 8.7 Conclusions -- References -- Chapter 9 Concluding Remarks -- About the Editors -- About the Contributors -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Hobart : CSIRO Marine Laboratories
    Materialart: Buch
    Seiten: 51 S , überwiegend Kt
    ISBN: 0643050310
    Serie: Report / CSIRO Marine Laboratories 209
    DDC: 551.46575
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Materialart: Buch
    Seiten: 89 S , graph. Darst
    ISBN: 064304292X
    Serie: Report / CSIRO Marine Laboratories 188
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...