GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (2)
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Physical geography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (366 pages)
    Edition: 1st ed.
    ISBN: 9783540327301
    Series Statement: Global Change - the IGBP Series
    DDC: 333.95
    Language: English
    Note: Intro -- CONTENTS -- 1 Global Ecology, Networks, and Research Synthesis -- 1.1 Introduction -- 1.2 Carbon and Water Cycles in the 21 st Century -- 1.3 Changing Biodiversity and Ecosystem Functioning -- 1.4 Landscapes under Changing Disturbance Regimes -- 1.5 Managing Ecosystem Services -- 1.6 Regions under Stress -- 1.7 The Way Forward -- References -- Part A Carbon and Water Cycles in the 21 st Century -- 2 CO 2 Fertilization: When, Where, How Much? -- 2.1 Carbon a Limiting Plant Resource? -- 2.2 Long-Term Biomass Responses and Carbon Pools -- 2.2.1 Time Matters -- 2.2.2 Nutrients and Water Determine Biomass Responses at Elevated CO 2 -- 2.2.3 Scaling from Growth to Carbon Pools -- 2.3 Carbon to Nutrient Ratios and Consumer Responses -- 2.3.1 The C to N Ratio Widens -- 2.3.2 Consequences for Herbivory, Decomposition and Plant Nutrition -- 2.4 Plant Water Relations and Hydrological Implications -- 2.5 Stress Resistance under Elevated CO 2 -- 2.6 Biodiversity Effects May Outweigh Physiology Effects -- 2.6.1 Hydrology Implications of Elevated CO 2 Depend on Species Abundance -- 2.6.2 Biodiversity Effects on Forest Carbon Stocking and Grassland Responses -- 2.7 Summary and Conclusions -- References -- 3 Ecosystem Responses to Warming and Interacting Global Change Factors -- 3.1 The Multiple Factor Imperative in Global Change Research -- 3.2 Ecosystem Responses to Experimental Warming -- 3.2.1 The GCTE-NEWS Synthesis -- 3.2.2 The ITEX Synthesis -- 3.2.3 The Harvard Forest Soil Warming Experiment -- 3.3 Temperature and CO 2 Interactions in Trees: the TACIT Experiment -- 3.3.1 Experimental Design -- 3.3.2 Growth Responses -- 3.3.3 Higher-Order Responses -- 3.3.4 TACIT Summary -- 3.4 More Than Two Factors: the Jasper Ridge Global Change Experiment -- 3.4.1 Experimental Design -- 3.4.2 Net Primary Productivity -- 3.4.3 Community Composition. , 3.4.4 JRGCE Summary -- 3.5 Modeling Temperature, CO 2 and N Interactions in Trees and Grass -- 3.5.1 Global Change Simulations for a California Annual Grassland -- 3.5.2 Comparing Forest and Grassland with G'DAY -- 3.6 Summary and Conclusions -- Acknowledgments -- References -- 4 Insights from Stable Isotopes on the Role of Terrestrial Ecosystems in the Global Carbon Cycle -- 4.1 Introduction -- 4.2 Ecosystem Carbon Cycles -- 4.3 The Global Carbon Cycle -- 4.4 Future Directions -- Acknowledgments -- In Memoriam -- References -- 5 Effects of Urban Land-Use Change on Biogeochemical Cycles -- 5.1 Introduction -- 5.2 Urban Land-Use Change -- 5.3 Urban Environmental Factors -- 5.3.1 Climate and Atmospheric Composition -- 5.3.2 Atmospheric and Soil Pollution -- 5.3.3 Introductions of Exotic Species -- 5.4 Disturbance and Management Effects -- 5.4.1 Lawn and Horticultural Management -- 5.4.2 Management Effort -- 5.5 Effects of Built Environment -- 5.6 Assessing Biogeochemical Effects - the Importance of Scale -- 5.7 Summary and Conclusions -- Acknowledgments -- References -- 6 Saturation of the Terrestrial Carbon Sink -- 6.1 Introduction -- 6.2 Location of the Current Terrestrial Carbon Sinks -- 6.3 Dynamics of Processes that Contribute to Carbon Sink Saturation -- 6.4 Processes Contributing to Terrestrial Carbon Sink Saturation -- 6.4.1 Processes Driven by Atmospheric Composition Change -- 6.4.2 Processes Driven by Climate Change -- 6.4.3 Processes Driven by Land-Use Change and Land Management -- 6.5 Integration and Model Predictions -- 6.6 Summary and Conclusions -- Acknowledgments -- References -- Part B Changing Biodiversity and Ecosystem Functioning -- 7 Functional Diversity - at the Crossroads between Ecosystem Functioning and Environmental Filters -- 7.1 Introduction -- 7.2 Environmental Filters Affect FD -- 7.3 FD effects on Global Change Drivers. , 7.3.1 The Traits of the Dominants -- 7.3.2 The Role of Interactions -- 7.4 Summary and Conclusions -- Acknowledgments -- References -- 8 Linking Plant Invasions to Global Environmental Change -- 8.1 Introduction -- 8.2 Plant Invasions and Elevated CO 2 -- 8.3 Plant Invasions and Climatic Change -- 8.4 Plant Invasions and Land Eutrophication -- 8.5 Plant Invasions and Changes in Land Use/Cover -- 8.6 Multiple Interactions -- 8.7 Summary and Conclusions -- Acknowledgments -- References -- 9 Plant Biodiversity and Responses to Elevated Carbon Dioxide -- 9.1 Ten Years of GCTE Research: Apprehending Complexity -- 9.1.1 Effects of CO 2 on Plant Diversity Through Alterations of the Physical Environment -- 9.2 Temporal Variation and Response to Elevated CO 2 -- 9.2.1 Reproductive and Evolutionary Aspects of the Response to Elevated CO 2 -- 9.2.2 Communities at Equilibrium Versus Dynamic Systems -- 9.3 Biodiversity Loss and Response to Elevated CO 2 -- 9.3.1 Species Diversity and Response to Elevated CO 2 -- 9.3.2 Ecosystem C Fluxes in a Species-Poor World -- 9.4 Summary and Conclusions -- References -- 10 Predicting the Ecosystem Consequences of Biodiversity Loss: the Biomerge Framework -- 10.1 Biodiversity and Ecosystem Functioning: a Synthesis -- 10.1.1 Why Biodiversity Matters to Global Change Ecology -- 10.1.2 Linking Change in Biodiversity with Change in Ecosystem Functioning -- 10.1.3 Lessons Learned from Early Debates -- 10.1.4 What We Have Learned about the Relationship between Biodiversity and Ecosystem Function -- 10.1.5 The Scientific Framework for Linking Biodiversity and Ecosystem Functioning -- 10.2 The BioMERGE Framework -- 10.2.1 The BioMERGE Structural Sub-Framework -- 10.2.2 The BioMERGE BEF Sub-Framework: an Expansion of the Vitousek-Hooper Framework -- 10.2.3 The BioMERGE Research Implementation Sub-Framework. , 10.3 Discussion: Towards a Large Scale BEF -- Acknowledgments -- References -- Part C Landscapes under Changing Disturbance Regimes -- 11 Plant Species Migration as a Key Uncertainty in Predicting Future Impacts of Climate Change on Ecosystems: Progress and Challenges -- 11.1 Introduction -- 11.2 Will Migration Be Necessary for Species Persistence? -- 11.2.1 Vegetation-Type Models -- 11.2.2 Species-Based Models -- 11.3 Measurements and Models of Migration Rates -- 11.4 Linking Migration and Niche Based Models -- 11.5 Summary and Conclusions -- Acknowledgments -- References -- 12 Understanding Global Fire Dynamics by Classifying and Comparing Spatial Models of Vegetation and Fire -- 12.1 Introduction -- 12.2 Background -- 12.3 Model Classification -- 12.4 Model Comparison -- 12.4.1 The Models -- 12.4.2 The Comparison Design -- 12.5 Results and Discussion -- 12.5.1 Model Classification -- 12.5.2 Model Comparison -- 12.6 Summary and Conclusions -- Acknowledgments -- References -- 13 Plant Functional Types: Are We Getting Any Closer to the Holy Grail? -- 13.1 In Search of the Holy Grail -- 13.2 Individual Plant Structure and Function -- 13.3 Traits and Environmental Gradients -- 13.3.1 Plant Functional Response to Mineral Resource Availability -- 13.3.2 Plant Functional Response to Disturbance -- 13.3.3 Projecting Changes in Plant Functional Traits in Response to Global Change -- 13.4 Scaling from Individual Plants to Communities: from Response Traits to Community Assembly -- 13.5 Scaling from Communities to Ecosystems: from Response Traits to Effect Traits -- 13.6 So, Are We Getting Closer to the Holy Grail? Scaling beyond Ecosystems -- 13.6.1 Plant Functional Traits and Landscape Dynamics -- 13.6.2 Regional to Global Models - Revisiting the Early Functional Classifications -- 13.6.3 Validation: the Contribution of Paleo-Data. , 13.7 Summary and Conclusions -- Acknowledgments -- References -- 14 Spatial Nonlinearities: Cascading Effects in the Earth System -- 14.1 Introduction -- 14.2 Conceptual Framework -- 14.3 Insights to Global Change Issues -- 14.3.1 Historical Example: the Dust Bowl of the 1930s -- 14.3.2 Wildfire -- 14.3.3 Invasive Species and Desertification -- 14.4 Forecasting Spatial Nonlinearities and Catastrophic Events -- 14.5 Summary and Conclusions -- Acknowledgments -- References -- 15 Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change -- 15.1 Introduction -- 15.2 Historical Antecedents and Development of DGVMs -- 15.2.1 Plant Geography -- 15.2.2 Plant Physiology and Biogeochemistry -- 15.2.3 Vegetation Dynamics -- 15.2.4 Biophysics -- 15.2.5 Human Intervention -- 15.3 Principles and Construction of DGVMs -- 15.3.1 Model Architecture -- 15.3.2 Net Primary Production -- 15.3.3 Plant Growth and Vegetation Dynamics -- 15.3.4 Hydrology -- 15.3.5 Soil Organic Matter Transformations -- 15.3.6 Nitrogen (N) Cycling -- 15.3.7 Disturbance -- 15.4 Evaluating DGVMS -- 15.4.1 Net Primary Production -- 15.4.2 Remotely Sensed "Greenness" and Vegetation Composition -- 15.4.3 Atmospheric CO 2 Concentration -- 15.4.4 Runoff -- 15.4.5 CO 2 and Water Flux Measurements -- 15.5 Examples of Applications of DGVMS -- 15.5.1 Holocene Changes in Atmospheric CO 2 -- 15.5.2 Boreal "Greening" and the Contemporary Carbon Balance -- 15.5.3 The Pinatubo Effect -- 15.5.4 Future Carbon Balance Projections -- 15.5.5 Carbon-Cycle Feedbacks to Future Climate Change -- 15.5.6 Effects of Land-Use Change on the Carbon Cycle -- 15.6 Some Perspectives and Research Needs -- 15.6.1 Comparison with Field Experiments -- 15.6.2 Plant Functional Types -- 15.6.3 The Nitrogen Cycle -- 15.6.4 Plant Dispersal and Migration -- 15.6.5 Wetlands. , 15.6.6 Multiple Nutrient Limitations.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ecology-Handbooks, manuals, etc. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (365 pages)
    Edition: 1st ed.
    ISBN: 9783030713300
    Series Statement: Ecological Studies ; v.241
    DDC: 577.27
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Ecosystem Collapse and Climate Change: An Introduction -- 1.1 Introduction -- 1.2 Defining Ecosystems Collapse -- 1.3 Observed Dynamics as They Occur -- 1.3.1 Polar and Boreal Ecosystems -- 1.3.2 Temperate and Semi-arid Ecosystems -- 1.3.3 Tropical and Temperate Coastal Ecosystems -- References -- Part I: Polar and Boreal Ecosystems -- 2: Ecosystem Collapse on a Sub-Antarctic Island -- 2.1 Background -- 2.2 The Collapse -- 2.2.1 Former State -- 2.2.2 Progression to the New State -- 2.2.3 Functional Changes -- 2.2.4 Context of the Change -- 2.3 Major Causes -- 2.4 Prognosis and Management Strategies -- 2.5 Wider Context -- References -- 3: Permafrost Thaw in Northern Peatlands: Rapid Changes in Ecosystem and Landscape Functions -- 3.1 Introduction -- 3.2 Current Distribution and Characteristics of Peatlands in the Northern Permafrost Region -- 3.2.1 Current Peatland Distribution and Major Regions -- 3.2.2 Peatland Characteristics Across Permafrost Zones -- 3.2.2.1 Peatlands in the Continuous Permafrost Zone -- 3.2.2.2 Peatlands in the Discontinuous Permafrost Zone -- 3.2.2.3 Peatlands in the Sporadic Permafrost Zone -- 3.3 Holocene Development of Peatlands in the Northern Permafrost Region -- 3.3.1 Timing and Mode of Peatland Initiation -- 3.3.2 Timing and Processes of Permafrost Aggradation -- 3.3.3 Holocene Carbon Accumulation in Permafrost Peatlands -- 3.4 Observed Peatland Change Associated with Permafrost Thaw -- 3.4.1 Peatland Change in the Continuous Permafrost Zone -- 3.4.2 Peatland Change in the Discontinuous and Sporadic Permafrost Zones -- 3.5 Implications of Permafrost Thaw -- 3.5.1 Hydrology and Water Quality -- 3.5.2 Ecology and Human Use -- 3.5.3 Carbon Cycling and Greenhouse Gas Exchange -- 3.5.4 Interactions Between Wildfire, Permafrost Thaw, and Peatland Carbon Balance -- 3.6 Conclusions. , References -- 4: Post-fire Recruitment Failure as a Driver of Forest to Non-forest Ecosystem Shifts in Boreal Regions -- 4.1 Introduction -- 4.2 Role of Fire in Boreal Forests -- 4.2.1 Post-fire Recruitment Dynamics -- 4.2.2 Post-fire Recruitment Failure -- 4.2.3 A Case Study of Post-fire Recruitment Failure in Southern Siberia -- 4.3 Drivers of Change in the Boreal Forest Zone -- 4.3.1 Climate Change -- 4.3.1.1 Climate Change and Increases in the Fire Regime -- 4.3.1.2 Climate Change and Decreased Ecosystem Resilience -- 4.3.2 Management and Human Influence -- 4.3.2.1 Forest Management and the Fire Regime -- 4.4 Measuring the Scale of the Problem -- 4.4.1 Disturbance Detection -- 4.4.2 Large-Scale Trends in Vegetation -- 4.4.3 Detecting Post-fire Recruitment Failure -- 4.4.4 Post-fire Recruitment Failure and the Prediction of Future Climate -- 4.5 Future Management -- References -- 5: A Paleo-perspective on Ecosystem Collapse in Boreal North America -- 5.1 Introduction -- 5.2 Ecosystem Collapse During the Late Pleistocene -- 5.2.1 Abrupt Climatic Changes -- 5.2.2 Human Disturbance -- 5.3 Ecosystem Building During Early- to Mid-Holocene -- 5.3.1 Creation of the Boreal Forest Environment -- 5.3.2 Peatland Expansion -- 5.3.3 Southern Conifer Forest and Insects -- 5.4 Ecosystem Collapse After the Mid-Holocene -- 5.4.1 Ecosystem Collapse in the Northern Part of the Boreal Forest -- 5.4.1.1 Climate-Fire Interactions -- 5.4.1.2 Collateral Effects of Forest Collapse -- 5.4.1.3 Extensive Collapse of Woodlands During the Little Ice Age -- 5.4.1.4 Wetland Ecosystem Collapse -- 5.4.1.5 Changing Water Levels of Subarctic Lakes and Rivers -- 5.4.2 Ecosystem Collapse in the Southern Part of the Boreal Forest -- 5.4.2.1 Shift of Closed-Crown Forests to Woodlands -- 5.4.2.2 Microclimatic Signatures of Closed-Crown Forests and Woodlands. , 5.5 Present Post-Little Ice Age Warming and Ecosystem Collapse and Recovery -- 5.5.1 Tree Line Advance, Regeneration and Consolidation of Pre-existing Forests of the Forest-Tundra Ecotone -- 5.5.2 Shrubification of the Northern Part of the Boreal Biome -- 5.5.3 Collapse and Recovery of Wetland and Riparian Ecosystems -- 5.6 Lessons Learned from the Past to Anticipate the Future -- References -- Part II: Temperate and Semi-arid Ecosystems -- 6: The 2016 Tasmanian Wilderness Fires: Fire Regime Shifts and Climate Change in a Gondwanan Biogeographic Refugium -- 6.1 Introduction -- 6.2 The 2016 Wilderness Fires -- 6.2.1 2016 Fire Impacts on A. cupressoides Populations -- 6.3 Persistence of A. cupressoides Under Climate Change -- 6.4 Broader Ecological Impacts -- 6.5 Anthropocene Management Responses -- 6.6 Conclusions -- References -- 7: Climate-Induced Global Forest Shifts due to Heatwave-Drought -- 7.1 Overview of Forest Mortality Episodes at the Global Scale -- 7.2 Causes of Forest Mortality by Drought -- 7.3 Historical Perspective of Forest Shifts -- 7.4 Abrupt Forest Mortality Events and Ecosystem Trajectory -- 7.4.1 General Trends -- 7.4.2 Cases of Forest Collapse and Its Relation with Management -- 7.5 Enhancing Resilience -- 7.5.1 Water Demand Strategy -- 7.5.2 Population and Biodiversity-Based Strategies -- 7.5.3 Disturbance Regime-Based Strategy: Wildfires -- 7.6 Future Prognosis of Forest Collapse -- 7.7 Conclusion -- References -- 8: Extreme Events Trigger Terrestrial and Marine Ecosystem Collapses in the Southwestern USA and Southwestern Australia -- 8.1 Introduction -- 8.1.1 Progressively Intense Ecological Stresses: From Drought to Warming to Heatwaves -- 8.1.2 Legacy Effects, Disturbance Interactions, and Order of Events -- 8.1.3 Ecosystem Collapses in Southwestern Australia and the USA -- 8.2 Southwestern USA Case Study. , 8.2.1 Terrestrial Drivers and Ecosystem Responses in the Southwestern USA -- 8.2.2 Marine Drivers and Ecosystem Responses in Southwestern USA -- 8.3 Southwestern Australian Case Study -- 8.3.1 Terrestrial Drivers and Ecosystem Responses in Southwestern Australia -- 8.3.2 Marine Drivers and Ecosystem Responses in Southwestern Australia -- 8.4 Ecological Implications -- 8.4.1 Prognosis for the Future -- 8.5 Managing Ecosystem Collapse and Future Research -- References -- Part III: Tropical and Temperate Coastal Ecosystems -- 9: Processes and Factors Driving Change in Mangrove Forests: An Evaluation Based on the Mass Dieback Event in Australia´s Gulf... -- 9.1 Introduction -- 9.2 Dynamic Processes Influencing Tidal Wetlands and Mangroves -- 9.2.1 Level 1: Global Setting of Tidal Wetlands: Site Geomorphology, Sea Level and Climate -- 9.2.2 Level 2: Composition of Dominant Vegetation Types of Tidal Wetlands: Regional Influences of Temperature and Rainfall -- 9.2.3 Level 3: Sustainable Turnover and Replenishment of Mangrove Forests: Small-Scale, Natural Disturbance Driving Forest Re-... -- 9.2.4 Level 4: Severe Drivers of Change and Replacement of Tidal Wetland Habitat: Large-Scale Disturbance-Recovery Dynamics In... -- 9.3 Climate and Natural Drivers of Key Environmental Changes Along Mangrove Shorelines -- 9.3.1 Shoreline Erosion and Seafront Retreat: Severe Storms, Sea Level Rise -- 9.3.2 Estuarine Bank Erosion: Flood Events, Sea Level Rise -- 9.3.3 Terrestrial Retreat: Upland Erosion, Sea Level Rise -- 9.3.4 Saltpan Scouring: Pan Erosion, Sea Level Rise -- 9.3.5 Depositional Gain: Flood Events, Sea Level Rise -- 9.3.6 Severe Storm Damage: Mangrove Dieback, Cyclonic Winds, Large Waves -- 9.3.7 Light Gaps: Lightning Strikes, Herbivore Attacks, Mini Tornados. , 9.3.8 Zonal Retreat: Local-Scale Patterns of Single, Dual and Triple Zones of Concurrent Upper Zone Dieback -- 9.4 The Synchronous, Large-Scale Mass Dieback of Mangroves in Australia´s Remote Gulf of Carpentaria -- Box. Mangrove Diversity in the Area of Mass Dieback of Mangroves -- 9.4.1 Likely Causal Factors Observed Along the Impacted Shoreline -- 9.4.2 Linking Specific Factors with the Dieback Event -- 9.4.3 Did Human-Induced Climate Change Play a Role in the 2015-2016 Dieback of Mangroves? -- 9.5 Current Recommendations for Management Strategies -- 9.6 A Regional Mitigation and Monitoring Strategy for Tidal Wetlands -- 9.7 Vulnerability of Impacted Shorelines with Key Risks and Consequences -- References -- 10: Recurrent Mass-Bleaching and the Potential for Ecosystem Collapse on Australia´s Great Barrier Reef -- 10.1 Introduction -- 10.2 Considering the Criteria for Collapse of Coral Reefs -- 10.3 Background Trends on the Great Barrier Reef -- 10.4 Climate Change and Mass Coral Bleaching -- 10.5 Is the Great Barrier Reef Collapsing? -- 10.6 Recasting Conservation Goals for Coral Reefs -- References -- 11: Sliding Toward the Collapse of Mediterranean Coastal Marine Rocky Ecosystems -- 11.1 Introduction -- 11.2 Marine Heatwaves and Mass Mortality Events in the Mediterranean -- 11.2.1 Sea Surface Thermal Stress Signals in the Cold Northern Mediterranean Areas -- 11.2.2 Subsurface Thermal Stress Signals in the Cold NW Mediterranean -- 11.2.2.1 Subsurface MHWs Amplification -- 11.3 Immediate Impacts, Sublethal Effects, and Recovery of Habitat-Forming Gorgonians from Mass Mortalities Events -- 11.3.1 Immediate Impacts and Sublethal Effects of Mass Mortality Events -- 11.3.1.1 Immediate Impacts -- 11.3.1.2 Sublethal Effects with Long-Term Consequences -- 11.3.2 Recovery Trajectories. , Box 11.1 Description of Demographic and Genetic Features of Octocorals.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...