GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
Document type
Source
Language
Years
DDC
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Metals in the body. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (468 pages)
    Edition: 1st ed.
    ISBN: 9780128045633
    DDC: 612.3/924
    Language: English
    Note: Cover -- Title page -- Copyright page -- Contents -- Contributors -- Preface -- Chapter 1 - Biometals and Alzheimer's Disease -- Introduction -- The Role of Copper in AD -- The Role of Zinc in AD -- The Role of Iron in AD -- Therapeutic Targeting of Biometals in AD -- Conclusions -- References -- Chapter 2 - Copper in Alzheimer's Disease -- Introduction -- The Physiology of Copper -- Copper Absorption and Distribution -- Copper in the Liver -- Copper's Path From General Circulation to the Brain -- The Key Role of Ceruloplasmin -- Copper Toxicity -- The Role of Copper in Alzheimer's Disease -- Genetics of Copper and AD -- The AD Copper Subtype -- Conclusions -- References -- Chapter 3 - The Role of Selenium in Neurodegenerative Diseases -- Introduction -- Selenoproteins and the Selenoproteome -- Selenium and Alzheimer's Disease -- Parkinson's Disease -- Other Neurodegenerative Diseases -- Conclusions -- References -- Chapter 4 - Does HFE Genotype Impact Macrophage Phenotype in Disease Process and Therapeutic Response? -- Iron -- Hemochromatosis -- Discovery -- Types -- HFE -- Structure -- Function -- Polymorphisms -- Macrophages -- Macrophage and Iron Metabolism -- Macrophage Polarization -- Macrophages and HFE -- HFE and Neurodegenerative Diseases -- Alzheimer's Disease -- Amyotrophic Lateral Sclerosis -- Parkinson's Disease -- HFE and Cancer -- HFE Animal Models -- Conclusions -- References -- Chapter 5 - Chemical Elements and Oxidative Status in Neuroinflammation -- Introduction -- Metal-Induced Neurotoxicity and Multiple Sclerosis -- Metals and Oxidative Status in Multiple Sclerosis -- Metals and Oxidative Status in Clinically Isolated Syndromes -- Conclusions -- References -- Chapter 6 - Metals and Neuroinflammation -- Introduction -- Mechanisms by Which Metal Elements Can Incite Immune Activity -- Metals as Haptens. , Metal Elements with Valence Instability -- Copper (Cu) -- Iron (Fe) -- Manganese -- Metals Attaching to Sulfhydryl Residues -- Lead (Pb) -- Mercury (Hg) -- Metals Associated with Particulate and Colloidal Materials -- Aluminum (Al) -- Titanium, Silver and Gold (Ti, Ag, Au) -- Metals Which Lead to Oxidative Stress and Inflammation by Means that are not yet Understood -- The Relation Between Reactive Oxygen and Nitrogen Species and Inflammation -- Conclusions -- References -- Chapter 7 - Metals and Prions: Twenty Years of Mining the Awe -- Prion Diseases -- Prion Protein -- Prion Protein Function -- Copper and PrP -- Zinc and PrP -- Iron and PrP -- Manganese and PrP -- Metals in Prion Disease -- Chelation Therapy and Prion Disease -- Conclusions -- References -- Chapter 8 - Manganese and Neurodegeneration -- Background -- Mn Essentiality and Metabolic Functions -- Mn Biokinetics and Homeostatic Control -- Routes and Sources of Mn Exposure -- Absorption of Airborne Mn -- Parenteral Exposure to Mn -- Oral Absorption of Mn From Food and Water -- Mn Biodistribution and Elimination -- Biokinetics of Mn in Brain -- Mn Transport Into Brain -- Regional Delivery of Mn in the Brain -- Mn Elimination From Brain Compartment -- Subcellular Distribution of Mn in Brain -- Homeostatic Control of Mn -- Influence of Age and Gender on Mn Metabolism -- Influence of Age on Mn Metabolism -- Influence of Gender on Mn Metabolism -- Toxicological Evaluation Mn Levels in Nutrition -- Neurotoxicology of Mn -- Deficient Exposure -- Mn Overexposure -- Clinical Features -- Modulating Factors of Mn Induced Neurotoxicity -- Mn dosage -- Duration of Mn supplementation -- Co-morbidities associated with Mn exposure -- Neuropathological Features -- Selected Mechanisms of Mn-Induced Neurotoxicity -- Alterations of Glutamatergic, GABAergic and dopaminergic (DAergic) systems. , Impaired Energy Metabolism -- Oxidative stress -- Biomonitoring of Mn in Patients Undergoing PN -- Biomarkers of Exposure, Effect, and Susceptibility -- Classical Approach of Mn Biomonitoring in PN Patients: Biomarkers of Exposure -- Mn Concentration in Body Fluids -- Magnetic Resonance Imaging (MRI) -- Alternative Approaches: Subclinical Biomarkers Predictive of Mn-Induced Neurotoxicity -- Neurobehavioral Tests -- Neuroimaging Biomarker: 1H Proton Magnetic Resonance Spectroscopy -- Hematologic and Urinary Biomarkers Related to Catecholaminergic System -- Conclusions -- Acknowledgment -- References -- Chapter 9 - Zinc in Autism -- Introduction -- Zinc signaling in autism -- Zinc and Inflammatory Processes in Autism -- Zinc and Synaptic Dysfunction in Autism-Molecular Pathways -- Therapeutic Strategies in Autism Based on Biometals -- Conclusions -- References -- Chapter 10 - Metals and Motor Neuron Disease -- List of Abbreviations -- Introduction -- Metal Exposure -- Metals in ALS Cerebrospinal Fluid -- Metals in ALS -- Protection by Metallothionein -- Metal Distribution in ALS -- Metal Related ALS Clusters -- ALS and Occupational Exposures to Metals -- Conjugal ALS -- Genetic Aspects -- Concluding Remarks -- References -- Chapter 11 - Metals and Lysosomal Storage Disorders -- Introduction -- Common Pathological Features of Lysosomal Storage Disorders -- Endosomal-Autophagic-Lysosomal System -- Lysosomal Dysfunction in LSDs -- Neuroinflammation -- Calcium Homeostasis, ER Stress, and Oxidative Stress in LSDs -- Description of Most Common Neurodegenerative LSDs Associated with Biometal Imbalance -- Gaucher Disease Type II and III -- Niemann Pick Type C1 -- Neuronal Ceroid Lipofuscinosis or Batten Disease -- Function and Regulation of Biometals -- Biometals in CNS -- Biometals in Lysosomes -- Loss of Biometal Homeostasis is Connected to Disease. , Role of Biometals and Biometal Binding Proteins in LSDs -- LSDs and Iron Homeostasis -- LSDs and Copper Homeostasis -- LSDs and Zinc Homeostasis -- Targeting Metals to Treat Disease -- References -- Chapter 12 - Developmental Exposure to Metals and its Contribution to Age-Related Neurodegeneration -- Introduction -- Developmental Exposure to Toxicants and Late Effects -- Developmental Lead Exposure and Alzheimer's Disease -- Developmental Arsenic Exposure and Alzheimer's Disease -- Conclusions and Future Perspectives -- Acknowledgment -- References -- Chapter 13 - Metal Biology Associated with Huntington's Disease -- Introduction -- The Epidemiology of HD -- The Symptoms of HD -- The Neuropathology of HD -- Biological Function of Wild-type and Pathogenic HTT Proteins -- Autophagy and Metals in Huntington's Disease -- Exosomes and Metal in Huntington's Disease -- Environmental Factors Impacting HD -- Metals in HD -- Iron in HD -- Copper in HD -- Calcium in HD -- Manganese in HD -- Manganese Deposition: Brain Regions, Cell Types, and Cellular Organelles -- Regional Deposition -- Cell-Type Deposition -- Subcellular Deposition -- Manganese Dyshomeostasis in HD -- Mn-Dependent and Mn-Utilizing Enzymes -- GS-Glutamine Synthetase -- SOD2-Mn-Dependent Superoxide Dismutase -- ARG1 and ARG2-Arginase -- ATM-Ataxia Telangiectasia Mutated -- MRE-11-Meiotic Recombination 11, and FAN1-Fanconi's Associated Nuclease 1 -- Intracellular pH and Metal Biology in HD -- Metal-Related Clinical Interventions in HD -- Conclusions and Future Directions -- References -- Chapter 14 - Metal-Binding to Amyloid-β Peptide: Coordination, Aggregation, and Reactive Oxygen Species Production -- Introduction -- Interest in Chemistry of Metal-Amyloid-β Complexes -- Structure of the Metal-Aβ Complexes -- Coordination of Metal Ions Cu, Zn, and Fe to Soluble, Monomeric Amyloid-β. , Cu(II)-β-Amyloid -- Cu(I)-β-Amyloid -- Zn(II)-β-Amyloid -- Fe(II)-β-Amyloid -- Cu(II) Coordination to Aβ With Disease Relevant Mutations or Other Derivatives -- Coordination of Metal Ions Cu and Zn to Aggregated β-Amyloid -- Cu(II) Coordination to Aggregated Aβ Peptide -- Cu(I) Coordination to Aggregated Aβ Peptide -- Zn(II) Coordination to Aggregated Aβ Peptide -- Affinity of Metals to Aβ -- Affinity of Metal Ions Cu(I/II) and Zn(II) to Soluble, Monomeric Amyloid-β -- Affinity of Metal Ions Cu(I/II) and Zn(II) to Aggregated β-Amyloid -- Cu(II) versus Zn(II) Binding -- Aggregation -- General Consideration for Aβ -- Impact of Metal Ions on Aβ Aggregation -- Reactive Oxygen Species Induced Oxidative Stress -- Reactive Oxygen Species Production by Cu-Aβ Complexes -- Cu-Aβ and ROS Production -- Redox Chemistry of Cu-Aβ Complexes by Cyclic Voltammetry -- Mechanism of ROS Production and the Reactive State of Cu-Aβ Complexes -- The Fenton type reaction -- Dioxygen Reduction -- Efficiency and Biological Relevance of the ROS Production by Cu-Aβ Complexes -- Conclusions -- Acknowledgments -- References -- Chapter 15 - Metals and Mitochondria in Neurodegeneration -- Introduction -- Iron Dyshomeostasis -- Copper Dislocation -- Zinc Deficiency -- Mitochondrial Dysfunction -- Conclusions -- Acknowledgments -- References -- Chapter 16 - Metal Transporters in Neurodegeneration -- Iron Transporters and Neurodegeneration -- Tf-TfR -- DMT1 -- Fpn -- Lf-LfR -- MTf -- Iron Transporters and PD -- Iron Transporters and AD -- Iron and Other Neurodegenerative Disorders -- Zinc Transporters and Neurodegeneration -- ZnT -- ZIP -- MTs -- Zinc Transporters and PD -- Zinc Transporters and AD -- Zinc Transporters and Other Neurodegenerative Diseases -- Copper Transporters and Neurodegeneration -- CTR1 -- The ATPases ATP7A/ATP7B -- Copper Transporters and PD. , Copper Transporters and AD.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...